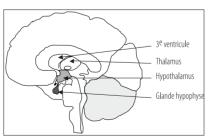
# Système hypothalamo-hypophysaire

Rappels Anatomie, Histologie, physiologie

MO-A

# INTRODUCTION

Il existe 8 hormones principales adénohypophysaires :


- Les hormones PEPTIDIQUES
  - La GH (Growth Hormone),
  - La prolactine (= PRL),
  - L'ACTH (Adreno Cortico Tropic Hormone),
  - La MSH (Melanocyte Stimulating Hormone),
  - La LPH (Lipotropic Hormone)
- Les hormones glycoprotéiques qui sont formées de 2 sous-unités  $\alpha$  et  $\beta$  (la sous-unité  $\alpha$  est commune à ces 3 hormones et à l'HCG)
  - TSH: Thyroid Stimulating Hormone,
  - FSH: Follicle Stimulating Hormone,
  - LH: Luteinizing Hormone

La LH et la FSH sont également appelées gonadotrophines hypophysaires.

# **HYPOTHALAMUS**

L'hypothalamus (cf. Fig. 1), également appelé région infundibulo-tubérienne, est un entonnoir appendu sous le thalamus situé en dessous du sillon sub-thalamique et du thalamus, et en avant de la substance perforée antérieure et des pédoncules cérébraux

Fig. 1 : Situation de l'hypothalamus



L'hypothalamus comprend de nombreux noyaux dont les neurones secrètent des

facteurs très importants pour la régulation hypothalamo-hypophysaire :

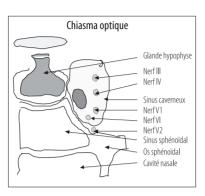
- noyau paraventriculaire ;
- noyau supra-optique ;
- noyau arqué.

# HYPOPHYSE

#### 1. Rappels anatomie

Généralités

L'hypophyse est appendue au plancher du 3e ventricule et comprend :


- L'adéno-hypophyse, située en avant qui a une origine embryonnaire ectodermique et qui est essentiellement constituée par le lobe antérieur = antehypophyse
- La neuro-hypophyse qui a une origine nerveuse diencéphalique qui comprend :
  - La tige pituitaire,
  - Le lobe postérieur,
  - L'infundibulum (réalise la liaison avec l'hypothalamus).

#### Rapports

L'hypophyse est située dans la selle turcique et a des rapports très importants avec les structures adjacentes (cf. fig. 2):

- Au dessus : le chiasma optique
- En dessous : le sinus sphénoïdal
- Latéralement : les sinus caverneux contenant :
  - L'artère carotide interne
  - Les nerfs crâniens : II, IV, V1, V2, VI
- Les plexus veineux.
- Vascularisation de l'hypophyse

Fig. 2: Rapports de la glande hypophyse



Le sang artériel provient de la carotide interne. Il existe 2 groupes d'artères : les artères hypophysaires supérieures et les artères hypophysaires inférieures.

# Le système porte hypophysaire

Il s'agit des réseaux capillaires réunis par des veines portes. Dans le réseau capillaire de l'anté-hypophyse, le sang qui irrigue l'anté-hypophyse a d'abord traversé le tissu nerveux de l'Infundibulum. Cette circulation porte est la voie de passage des médiateurs hypothalamiques hormonaux qui régulent l'activité de l'adéno-hypophyse.

## 2. Rappels histologie

- Adéno-hypophyse : glande trabéculée formée
  - De cellules non hormonogènes,
  - 5 types de cellules hormonogènes qui vont synthétiser les hormones adénohypophysaires :
    - Cellules somatotropes :
      - sécrétion GH,
    - Cellules mammotropes
      - sécrétion prolactine,
    - Cellules cortico-mélano-lipotropes
    - sécrétion ACTH, LPH, MSH,
    - Cellules gonadotropes :
    - sécrétion FSH et LH,
    - Cellules thyréotropes :
      - sécrétion TSH.

Chacun de ces types de cellules peut former un clone de cellules identiques pour former un adénome (à cellule somatotrope = acromégalie, à cellule corticotrope = maladie de Cushing...)

• Post-hypophyse

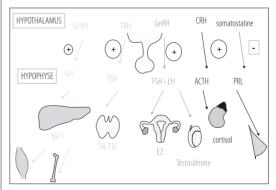
La post-hypophyse est constituée de tissu nerveux dépendant de l'hypothalamus : il

s'agit de neurones dont le noyau est situé dans l'hypothalamus et dont l'axone se dirige dans l'hypophyse et qui ont une activité sécrétoire. Ils sont divisés en 2 parties :

# Le système hypothalamo-post-hypophysaire :

Les axones se terminent dans le lobe postérieur de l'hypophyse. Les produits de sécrétion passent dans la circulation générale.

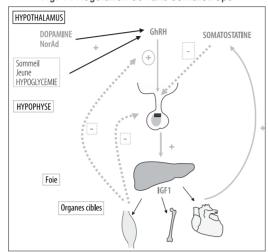
- Sécrétion de l'ocytocine,
- Sécrétion de l'ADH,
- Le système hypothalamo-infandibulaire :


Les axones se terminent dans l'infundibulum et dans la partie supérieure de la tige infundibulaire. Les produits de sécrétion passent dans la circulation porte destinée à l'adénohypophyse : il s'agit de peptides hypophysiotropes qui ont 2 types d'action

- Action de stimulation : les libérines
  - GH RH : Growth Hormone releasing factor,
  - CRH = CRF = Corticotropin releasing Factor,
  - T.R.H. = Thyéotropin Releasing hormone.
  - GnRH = Gonadotrophin Releasing Hormone,
- Action inhibitrice :
  - somatostatine.

# PHYSIOLOGIE

### 1. Axes hypophysaires


Fig. 3: Axes hypophysaires



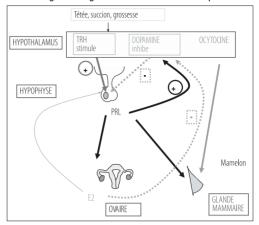
Physiologie axe thyréotrope : cf. module 0 thyroïde Physiologie axe corticotrope : cf. module 0 surrénale Physiologie axe gonadotrope : cf. module 0 gonades

### 2. Physiologie axe somatotrope

Fig. 4 : Régulation de l'axe somatotrope



#### • GH:


- Hormone peptidique de 191 acides aminés. Les récepteurs de la GH sont principalement présents sur les cellules musculaires, les adipocytes et les hépatocytes.
- Rythme de sécrétion : toutes les 3 heures, augmente pendant le sommeil à ondes lentes.

#### • Effets de la GH:

- Croissance staturo-pondérale et croissance osseuse: par l'intermédiaire de la production d'IGF1 (Insulin-like Growth Factor, ou somatomédine) par le foie.
   L'IGF1 agit sur les tissus conjonctifs. Il entraîne la croissance du cartilage, des tissus conjonctifs mous et du muscle.
- Métabolisme :
  - Protidique: favorise l'anabolisme protidique (par effet direct sur le foie, par effet indirect sur les tissus mous médié par IGF1),
  - Lipidique : augmente le catabolisme lipidique (action lipolytique),
  - Glucidique : hormone HYPERGLYCÉ-MIANTE,
  - Phosphocalcique : augmente la phosphorémie et la calcémie,
- Régulation (cf. figure 4)

# 3. Physiologie axe lactotrope

Fig. 5 : Régulation de l'axe lactotrope

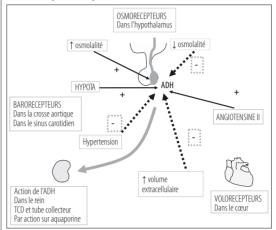


#### • Prolactine :

- Hormone peptidique formée de 199 acides aminés
- Différentes formes moléculaires :
  - Forme monomérique : 70 % : forme active.
  - Forme dimérique : big prolactine : 20 %,
  - Forme avec agrégats : 10 %,
- Pulsatilité : rythme ultradien avec une périodicité de 90 min
- Effets physiologiques de la prolactine
  - Chez la femme :
    - Au cours du cycle menstruel :
      - Pendant la phase folliculaire :
        - Au niveau de la thèque interne, la prolactine sensibilise la thèque interne à la LH et favorise la sécrétion d'estrogènes : action lutéotrope,
      - Pendant la phase lutéale :
        - La PRL assure le maintient de la fonction lutéotrope et sensibilise les cellules du corps jaune à la FSH
      - Au cours de la grossesse et de la lactation :
        - · Rôles de la prolactine
        - Mammogenèse : développement de la glande mammaire
        - · Lactogenèse : synthèse du lait
        - Galactopoièse : sécrétion, excrétion du lait
      - Évolution de la glande mammaire
        - · Avant la grossesse :
          - Extrémités des canaux galactophores borgnes,

- · Pendant la grossesse :
  - L'action de la PRL ne peut se faire que si l'action des autres hormones a eu lieu : par augmentation des canaux galactophores, l'ouverture des canaux, la formation d'alvéoles.
- · À l'accouchement :
  - Augmentation très importante des canaux et développement de l'appareil lobulo-alvéolaire
- · En fin de grossesse :
  - La PRL permet la synthèse des protéines et des sucres spécifiques du lait.
- Chez l'homme:
  - Sur les cellules de LEYDIG
  - Action lutéotrope : favorise l'action de la LH
  - sur les glandes annexes :
  - Potentialisation des actions de la testostérone : action trophique
- Régulation (cf. figure 5)

#### 4. Physiologie action/régulation ADH


- ADH = Hormone Antidiurétique = vasopressine (c'est une hormone peptidique)
- Action de l'hormone antidiurétique
  - Réabsorption d'eau
    - Par l'épithélium du tube rénal (fin du tube contourné distal et tubes collecteurs) sur un récepteur spécifique de type 1 ou 2 et action sur les canaux hydriques : les Aquaporines
    - Sécrétion insuffisante = diabète insipide central (clinique : syndrome polyuro-polydipsique)
- Régulation (cf. fig. 6)

Sa production est stimulée par plusieurs mécanismes :

- 3 mécanismes essentiels
  - OSMOLARITÉ
  - <sup>□</sup> ↑ Osmolalité plasmatique → ↑
     sécrétion ADH
  - Variation des volumes des liquides Extracellulaires :
  - ↑volume extracellulaire → ↓ sécrétion ADH
  - PRESSION ARTÉRIELLE
  - □ Hypotension →↑ sécrétion ADH
- Mécanismes non spécifiques

- Stress
- Action angiotensine II

Fig. 6: Régulation de la sécrétion d'ADH



# L'ESSENTIEL

#### 1. ANTE HYPOPHYSE

- Rapports importants : chiasma optique, nerfs oculomoteurs, sinus caverneux
- 5 axes
  - CORTICOTROPE +++
  - Thyréotrope
  - Lactototrope
  - Somatotrope
  - Gonadotrope

Pour chacun de ses axes, il peut y avoir une hyperproduction (dans le cadre d'un ADÉNOME HYPOPHYSAIRE) ou une insuffisance qui peut atteindre 1 ou plusieurs axes

#### 2. POST-HYPOPHYSE

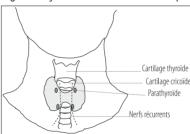
- Sécrétion d'ADH:
- En l'absence de sécrétion d'ADH, il existe un diabète insipide d'origine centrale
- Excès de production d'ADH : SiADH : syndrome de sécrétion inapproprié d'ADH

# Thyroïde : rappels d'anatomie, histologie et physiologie

Rappels d'Anatomie, Histologie et Physiologie

MO-B

# ANATOMIE


# 1. Thyroïde

Généralités

La thyroïde est une glande en forme de papillon, constituée d'un isthme et de 2 lobes latéraux, située en région cervicale médiane, infra-hyoïdienne, superficielle devant la trachée et le larynx.

- · Vascularisation artérielle
  - Artère thyroïdienne supérieure : Naît de l'artère carotide externe,
  - Artère thyroïdienne inférieure : Naît du tronc thyro-cervical.
- Rapports importants :
  - Glandes parathyroïdes
  - Nerf récurrent

Fig. 1: Thyroïde: situation anatomique



# 2. Aires ganglionnaires

- Lymphatiques
  - Groupe central : I et VI
- I : Sus-hyoïdien : au-dessus de l'os hvoïde.
- VI supérieur : Sus-thyroïdien au-dessus de l'isthme,
- VI inférieur : Cervical transverse,
- VI droit et gauche : Récurrentiel,
  - Groupes latéraux :
- · Secteurs jugulo-carotidiens :
  - II : Au-dessus de l'artère thyroïdienne supérieure,

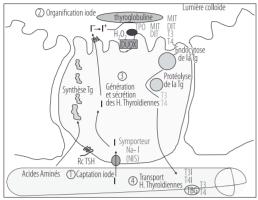
- III : Au-dessus du croisement du muscle omo-hyoïdien et de la jugulaire interne,
- IV : En dessous du croisement du muscle omo-hyoïdien et de la jugulaire interne,
- Secteur spinal
  - V : Derrière le muscle sterno-cléidomastoidien.

# HISTOLOGIE

La glande thyroïde est formée de follicules. Ces follicules sont constitués de 2 types de cellules :

- Cellules folliculaires = thyrocytes (99,9 %) dont le rôle est de produire les hormones thyroïdiennes T3 et T4,
- Cellules C = para-folliculaire (0,1 %) dont le rôle est de sécréter la calcitonine.

# PHYSIOLOGIE


#### 1. TSH

TSH = Thyroid Stimulating Hormon

- Glycoprotéine synthétisée dans les cellules thyréotropes de l'antéhypophyse, constituée :
- d'une sous-unité  $\alpha$  : commune à la TSH, LH, FSH et HCG,
- d'une sous-unité ß spécifique.
  - Pic de sécrétion : peu avant le sommeil
  - Taux normal: 0,4 à 4 mUI/I

# 2. Effets physiologiques de TSH : synthèse des hormones thyroïdiennes

Fig. 2 : Synthèse des hormones thyroïdiennes



- 1<sup>re</sup> étape : captation de l'iode (cf. Fig. 2)
  - L'iode est captée sous sa forme ionisée (iodure) par un transporteur spécifique : le symporteur NIS (pompe à iode et à sodium couplée à une ATPase).
- 2e étape : organification de l'iode
  - Dans la lumière folliculaire, en présence de Thyroglobuline, Thyroperoxydase (= TPO) et H2O2
  - La thyroglobuline est une très grosse molécule avec des séquences répétitives qui contiennent les thyrosines produisant la T3 et la T4.
  - Oxydation de l'iodure par la TPO sous la stimulation de la TSH,
  - Formation des résidus iodothyronines,
  - Dégradation de la Thyroglobuline iodée en thyrosine monoiodée et diodée
  - Couplage des résidus sous l'action de la TPO en :
  - MIT+DIT : triodothyrosine = T3
  - DIT + DIT : tétraiodothyrosine = T4
- 3e étape : génération et sécrétion des hormones thyroïdiennes :
  - Endocytose et protéolyse de la thyroglobuline,
  - Libération des hormones thyroïdiennes.
- 4e étape : transport des hormones thyroïdiennes :
  - Forme liée à la Thyroid Binding Globuline (TBG),
  - Forme libre : T3l et T4l.

- 5e étape : action au niveau des tissus cibles :
  - Au niveau des organes cibles, la T4 est convertie en T3 qui est la véritable hormone active :
  - désiodation T4 en T3 par une désiodase (nécessitant la présence de sélénium et inhibée
  - par un anti-thyroïdien de synthèse : (le PTU)

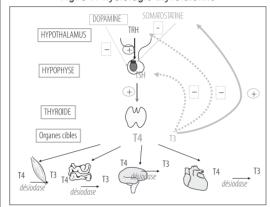
# EFFETS DES HORMONES THYROÏDIENNES

### 1. Effets généraux

- Augmentation de production de chaleur
- Augmentation d'énergie
- Augmentation de la consommation d'oxygène
- Élévation du métabolisme de base
- Effet sur le métabolisme :
  - Lipidique : baisse LDL et stimulation lipolyse
  - Glucidique : augmentation glycogénolyse hépatique et néoglucogenèse
  - Protidique : augmentation du catabolisme protéique

#### 2. Effets spécifiques

Rôle trophique de la TSH sur le tissu thyroïdien (ce qui explique le rôle important du traitement freinateur pour diminuer la TSH dans les cancers thyroïdiens différenciés)


- Cardiovasculaire:
  - Vasodilatation,
  - Augmentation de la contractibilité cardiaque (effet inotrope positif),
  - Augmentation de la fréquence cardiaque (effet chronotrope positif),
- Système nerveux :
  - Effets sur le développement neuronal du fœtus,
  - Stimulation des récepteurs β adrénergique,
- Muscles squelettiques :
  - Facilitation de la vitesse de conduction,
- Système digestif
  - Os : augmente le remodelage osseux en faveur de l'ostéoclasie.

# RÉGULATION HYPOTHALAMO-HYPOPHYSAIRE

Le fonctionnement de l'axe thyréotrope est sous le contrôle du système hypothalamohypophysaire.

La T3L exerce un rétrocontrôle négatif sur la sécrétion de TSH et de TRH.

Fig. 3: Physiologie thyroïdienne



# **L'ESSENTIEL**

### 1. ANATOMIE

- Nerf récurrent
- si lésion : risque dysphonie
- Glandes parathyroïdes
- si lésion : risque hypocalcémie

# 2. HISTOLOGIE : 2 types de cellules

- Folliculaire
- Cellules C (à l'origine des cancers médullaires)

### 3. PHYSIOLOGIE

Hypothalamus : TRH Hypophyse : TSH

Thyroïde : T4I et T3I (= hormone

active)

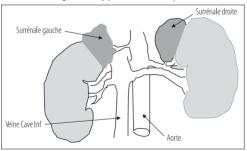
Tissus cibles : Cœur +++, système

nerveux

# Surrénales : rappels anatomie, physiologie

MO-C

## ANATOMIE


#### 1. Généralités

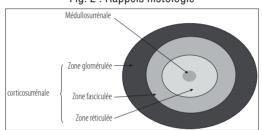
Les glandes surrénales coiffent le pôle supérieur des reins, mesurent environ 4,5 x 3 x 1 cm et pèsent 10 à 12 g environ.

# 2. Rapports (cf. Figure 1)

- Surrénale droite
  - En arrière : D12 et ses 2 disques,
     12e cote droite, pilier droit du diaphragme et cul-de-sac pleural,
  - En dedans et en avant : VCI, ganglions lymphatiques,
  - □ En haut : foie,
- Surrénale gauche
  - En arrière : D12 et ses 2 disques, pilier gauche du diaphragme, cul-de-sac pleural
  - En dedans et en avant : corps du pancréas et estomac
  - En dehors : rein gauche
  - □ En haut : sommet du rein et rate

Fig. 1: Rappels anatomiques




## HISTOLOGIE

La glande surrénale est composée de 2 parties (cf. Figure 2)

- La corticosurrénale, périphérique : composée de 3 couches :
- Zone glomérulée : sécrétion minéralocorticoïde,

- Zone fasciculée : sécrétion glucocorticoïde,
- Zone réticulée : sécrétion des androgènes,
  - La médullosurrénale :
- Sécrétion des catécholamines.

Fig. 2: Rappels histologie



# BIOSYNTHÈSE ET TRANSPORT DES HORMONES CORTICO-SURRÉNALIENNES

- Étapes initiales communes

Dans la mitochondrie, le cholestérol est hydrolysé en position 20 et 22 puis une scission, catalysée par la 20-22 desmolase, conduit à la PREGNENOLONE : point de départ de la voie  $\Delta 5$ 

La pregnenolone sort de la mitochondrie et est transformée dans le cytosol en PROGESTÉRONE par 2 enzymes : la  $3\beta$ -déshydrogénase ( $3\beta$ HSD) et la  $\Delta$ 4,5-stéroïde isomérase : point de départ de la voie  $\Delta$ 4

- Voies différenciées (cf. Figure 3) :
  - $^{\tt u}$  Synthèse des glucocorticoïdes : voie  $\Delta 4$

La progestérone subit l'action successive de 3 hydroxylases : la  $1\alpha$ hydroxylase, la 21hydroxylase, puis la  $11\beta$ hydroxylase pour donner le CORTISOL (= composé F).

 Synthèse des minéralocorticoïdes : voie Δ4.