Erratum pour : « Les maths au collège : exercices corrigés progressifs ». Plusieurs coquilles, présentes sur ces trois pages, ont été corrigées.

4. Solutions

Exercice 3.

a)
$$a - a = 0 \ge 0$$
 donc $a \le a$

$$\text{b) } \begin{cases} a\leqslant b\\ a\geqslant b \end{cases} \text{ entraı̂ne } \begin{cases} (b-a) \text{ positif ou nul}\\ (b-a) \text{ négatif ou nul} \end{cases} \text{ entraı̂ne } b-a=0, \text{ c'est-à-dire } a=b.$$

c)
$$\begin{cases} a\leqslant b\\ b\leqslant c \end{cases} \text{ entraı̂ne } \begin{cases} (b-a) \text{ est positif ou nul}\\ (c-b) \text{ est positif ou nul} \end{cases}$$

entraîne « $\underbrace{(c-b)+(b-a)}_{c-a}$ est positif ou nul », entraîne « $a\leqslant c$ ».

À retenir : On peut ajouter membre à membre deux inégalités de même sens.

Exercice 5.

a)
$$]-\infty; -4[$$

c)
$$]-\infty;3]$$

e)
$$[9; +\infty[$$

g)
$$]-\infty;6$$

b)
$$[-5; +\infty]$$

d)
$$]7; +\infty$$

f)
$$]-8; +\infty$$

a)
$$]-\infty; -4[$$
 c) $]-\infty; 3]$ e) $[9; +\infty[$ g) $]-\infty; 6[$ b) $[-5; +\infty[$ d) $]7; +\infty[$ f) $]-8; +\infty[$ h) $]-\infty; -1]$

Exercice 6.

a)
$$S = [4; +\infty[$$

e)
$$\mathcal{S} = \left[-\infty; -\frac{1}{2} \right]$$

i)
$$S = \left] -\infty; \frac{5}{12} \right]$$

b)
$$S =]-\infty; 10[$$

f)
$$S = \left] -\infty; \frac{9}{2} \right]$$

e)
$$\mathcal{S} = \left] -\infty; -\frac{1}{2} \right[$$
 i) $\mathcal{S} = \left] -\infty; \frac{5}{12} \right]$ f) $\mathcal{S} = \left] -\infty; \frac{9}{2} \right]$ j) $\mathcal{S} = \left] \frac{13}{12}; +\infty \right[$

c)
$$\mathcal{S} =]-10; +\infty[$$

g)
$$S = \left[-\frac{9}{2}; +\infty \right]$$

g)
$$S = \left[-\frac{9}{2}; +\infty \right[$$
 k) $S = \left[-\infty; -\frac{13}{12} \right[$

d)
$$\mathcal{S} =]-\infty; -4]$$

h)
$$S = \left[\frac{1}{2}; +\infty\right]$$

l)
$$S = \left[-\frac{5}{12}; +\infty \right[$$

Exercice 7.

a)
$$\mathcal{S} =]-\infty; 6[$$

e)
$$S = \left] -\infty; -\frac{7}{5} \right]$$

i)
$$S = \left[-\frac{4}{3}; +\infty \right]$$

b)
$$S =]-6; +\infty[$$

f)
$$\mathcal{S} = \left] -\frac{7}{5}; +\infty \right[$$
 j) $\mathcal{S} = \left] -\infty; \frac{4}{3} \right]$
g) $\mathcal{S} = \left[\frac{7}{5}; +\infty \right[$ k) $\mathcal{S} = \left] -\infty; \frac{4}{3} \right]$

$$j) \mathcal{S} = \left] -\infty; \frac{4}{3} \right]$$

c)
$$S = [6; +\infty[$$

g)
$$S = \left[\frac{7}{5}; +\infty\right]$$

$$\mathbf{k}) \, \mathcal{S} = \left] -\infty; \frac{4}{3} \right]$$

d)
$$\mathcal{S} =]-\infty; -6[$$

h)
$$S = \left] -\infty; \frac{7}{5} \right[$$

$$1) \mathcal{S} = \left[-\frac{4}{3}; +\infty \right[$$

Chapitre 10 • Inégalités et inéquations

Exercice 8.

a)
$$S = \left[\frac{7}{3}; +\infty\right[$$

e)
$$\mathcal{S} = \left] -\infty; \frac{4}{5} \right[$$

i)
$$S = \left[\frac{5}{2}; +\infty\right[$$

b)
$$\mathcal{S} = \left] - \infty; -\frac{7}{3} \right[$$
 f) $\mathcal{S} = \left[-\frac{4}{5}; + \infty \right[$ j) $\mathcal{S} = \left] -\frac{5}{2}; + \infty \right[$

f)
$$S = \left[-\frac{4}{5}; +\infty \right]$$

j)
$$S = \left] -\frac{5}{2}; +\infty \right|$$

c)
$$S = \left] -\infty; -\frac{7}{3} \right]$$

g)
$$S = \left[-\frac{4}{5}; +\infty \right]$$

c)
$$\mathcal{S} = \left] -\infty; -\frac{7}{3} \right[$$
 g) $\mathcal{S} = \left[-\frac{4}{5}; +\infty \right[$ k) $\mathcal{S} = \left] -\infty; -\frac{5}{2} \right[$

d)
$$S = \left\lceil \frac{7}{3}; +\infty \right\rceil$$

h)
$$S = \left[\frac{4}{5}; +\infty\right[$$

 $entra \hat{i} n e$

 $entra \hat{\imath} ne$

l)
$$S = \left] -\infty; \frac{5}{2} \right]$$

Exercice 9.

• Le périmètre vaut : $p = 2\pi r = 14\pi$ cm

$$3,14 < \pi < 3,15$$
 entraîne

$$3,14 \times 14 < 14\pi < 3,15 \times 14$$

 43.96

• L'aire vaut : $A = \pi r^2 = 49\pi$ cm²

$$3,14 < \pi < 3,15$$
 entraîne entraîne

$$3,14 \times 49 < 49\pi < 3,15 \times 49$$

 $153,86 < A < 154,35$

Exercice 10.

Le périmètre vaut $p=2\pi r\approx 2\times \frac{22}{7}\times r=\frac{44}{7}\times r$

Donc le rayon vaut $r = \frac{7}{44} \times p$

Or
$$8,80 , donc $\underbrace{\frac{7}{44} \times 17,6}_{=2,80} < r < \underbrace{\frac{7}{44} \times 17,9}_{\approx 2,85}$$$

Donc l'aire
$$A$$
 peut s'encadrer de la manière suivante :
$$\underbrace{\frac{22}{7} \times 2,80^2}_{\approx 24,6} < \frac{22}{7} \times r^2 < \underbrace{\frac{22}{7} \times 2,85^2}_{\approx 25,5}$$

En conclusion, $24.6 \text{ m}^2 < A < 25.5 \text{ m}^2$

Exercice 11.

a)
$$S =]-\infty; 3[$$

d)
$$\mathcal{S} = \left] -\frac{1}{5}; +\infty \right[$$
 g) $\mathcal{S} = \left] -\frac{9}{2}; +\infty \right[$

g)
$$S = \left[-\frac{9}{2}; +\infty \right]$$

b)
$$S = \left] -\infty; \frac{13}{5} \right[$$

e)
$$S =]-\infty; 2$$

e)
$$\mathcal{S} =]-\infty; 2]$$
 h) $\mathcal{S} = \left]-\infty; \frac{17}{14}\right]$

c)
$$\mathcal{S} = \left] - \infty; -\frac{3}{5} \right]$$

f)
$$S = \left] -\infty; -\frac{1}{5} \right]$$

f)
$$S = \left] -\infty; -\frac{1}{5} \right]$$
 i) $S = \left] -\infty; -\frac{9}{14} \right]$

Exercice 12.

a)
$$S = \left] -\infty; -\frac{3}{4} \right]$$

c)
$$S =]-\infty; -2[$$

e)
$$S = \left[-\frac{4}{3}; +\infty \right[$$

b)
$$S =]11; +\infty[$$

d)
$$S = [3; +\infty[$$

f)
$$S = \left[\frac{1}{10}; +\infty\right[$$

Exercice 13.

a)
$$S =]-\infty; 1]$$

e)
$$S = \emptyset$$

h)
$$\mathcal{S} =]-\infty; 0[$$

b)
$$S = [168; +\infty[$$

c)
$$S =]-\infty; 8[$$

f)
$$S = \left[\frac{2}{5}; +\infty\right]$$

i)
$$S = [0; +\infty[$$

d)
$$S = \left] -\infty; \frac{1}{3} \right[$$

g)
$$S = \mathbb{R}$$

j)
$$S =]-\infty; -1[$$

Exercice 14.

a)
$$S =]-\infty; -48[$$

d)
$$S = \emptyset$$

h)
$$S =]-\infty; 8[$$

b)
$$S = \left[\frac{2}{3}; +\infty\right]$$

e)
$$\mathcal{S} = [-4; +\infty[$$

f) $\mathcal{S} =]-\infty; 11[$

i)
$$S =]-\infty; 3]$$

c)
$$S = [20; +\infty[$$

g)
$$\mathcal{S} = \mathbb{R}$$

j)
$$S = [3; +\infty[$$

Exercice 15.

a)
$$S = \left] -\infty; \frac{2}{11} \right]$$

c)
$$\mathcal{S} = [0; +\infty[$$

f)
$$S = \mathbb{R}$$

b)
$$S = \left] -\infty; \frac{8}{7} \right[$$

d)
$$S = \left] -\infty; \frac{2}{3} \right[$$

e) $S = \emptyset$

g)
$$\mathcal{S} =]-\infty; 0[$$

h) $\mathcal{S} = [0; +\infty[$

Exercice 16.

a)
$$S = \left] -\infty; -\frac{13}{4} \right[$$

d)
$$S =]-\infty; 8]$$

g)
$$S = \emptyset$$

b)
$$S =]14; +\infty[$$

e)
$$\mathcal{S} = \left] -\infty; -\frac{26}{5} \right[$$
 h) $\mathcal{S} = \left] -\infty; \frac{41}{26} \right]$

h)
$$S = \left[-\infty; \frac{41}{26} \right]$$

c)
$$\mathcal{S} = \mathbb{R}$$

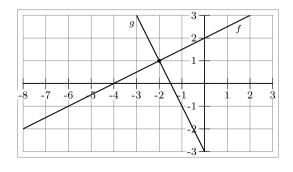
f)
$$S = \left[-\frac{19}{37}; +\infty \right[$$

Exercice 17.

a) Réponse : 17,5/20. En effet, $\frac{11,5\times 11+x}{12}\geqslant 12$ équivaut à $x\geqslant 17,5.$

En effet, $\frac{15.6 \times 11 + x}{12} \geqslant 16$ équivaut à $x \geqslant 20.4$.

Exercice 18. À partir de 600 boîtes. En effet, $1,80x \ge 150 + 1,55x$ équ. à $x \ge 600$.


Exercice 19.

La courbe représentative de q est « au-dessus » de celle de ftant que x reste inférieur ou égal $\hat{a}-2$.

Donc on peut prévoir que

$$\mathcal{S} =]-\infty; -2]$$

Une résolution algébrique valide ce résultat.

