Algèbre

Compléments de cours

1. Si P(X) est un polynôme scindé à racines simples et à coefficients com-

plexes, soit
$$P(X) = \alpha \prod_{k=1}^{n} (X - z_k)$$
, alors $\frac{1}{P(X)} = \sum_{k=1}^{n} \frac{1}{P'(z_k)(X - z_k)}$.

En effet $\frac{z-z_k}{P(z)} = \frac{z-z_k}{P(z)-P(z_k)} \underbrace{z \to z_k}_{z \to z_k} \frac{1}{P'(z_k)}$ car z_k est une racine simple et, donc, $P'(z_k) \neq 0$.

- **2.** Si A et B sont des éléments de $M_n(\mathbb{K})$ alors $\det(xA+B) \in \mathbb{R}_n[x]$ et le coefficient de x^n est det(A) d'après les propriétés de det.
- **3.** Si f est une application n-linéaire sur \mathbb{R}^p à valeurs dans \mathbb{R} et si u_1, u_2, \dots, u_n sont des applications dérivables de \mathbb{R} dans \mathbb{R}^p alors $f(u_1, \dots, u_n)$ est dérivable et, en la notant φ , on a :

$$\varphi' = f(u'_1, u_2, \dots, u_n) + f(u_1, u'_2, u_3, \dots, u_n) + \dots + f(u_1, \dots, u_{n-2}, u'_{n-1}, u_n) + f(u_1, \dots, u_{n-1}, u'_n).$$

4. Si u est un endomorphisme nilpotent d'un espace vectoriel de dimension n alors son indice p de nilpotence, défini par $p = \min \{k \in \mathbb{N}^* \mid u^k = 0_{\mathcal{L}(E)}\}$, vérifie $p \leq n$.

En PSI cela découle du théorème de Cayley-Hamilton car, nécessairement, $\chi_u(X) = X^n \text{ et } \chi_u(u) = u^n = 0_{\mathcal{L}(E)}.$

En PC on peut raisonner par l'absurde. Si p > n alors u^n n'est pas nul et, classiquement, si $x \notin \text{Ker}(u^n)$, alors la famille $(x, u(x), u^2(x), \dots, u^n(x))$ est libre de cardinal n+1 dans E de dimension n, ce qui est absurde.

5. Matrices réelles semblables sur $\mathbb C$

Si $(A, B) \in (\mathfrak{M}_n(\mathbb{R}))^2$ et s'il existe P dans $GL_n(\mathbb{C})$ telle que $A = PBP^{-1}$ alors il existe Q dans $\operatorname{GL}_n(\mathbb{R})$ telle que $A = QBQ^{-1}$.

En effet si $P = P_1 + iP_2$ où $(P_1, P_2) \in (\mathfrak{M}_n(\mathbb{R}))^2$ alors $F : x \mapsto \det(P_1 + xP_2)$ est polynomiale réelle non nulle en i et, donc, il existe au moins un réel λ tel que $F(\lambda) \neq 0$; on choisit un tel λ et on pose $Q = P_1 + \lambda P_2$

 $AP = PB \iff (AP_1, AP_2) = (P_1B, P_2B)$ en séparant parties réelles et parties imaginaires d'où, en combinant, AQ = QB.

Comme $det(Q) = F(\lambda) \neq 0$ la matrice Q est élément de $GL_n(\mathbb{R})$ et on a :

$$A = QBQ^{-1}.$$

6. Matrices équivalentes

Pour les exercices concernant le rang d'une matrice on pourra utiliser : si $A \in \mathfrak{M}_{n,p}(\mathbb{K})$ et si r est un entier naturel, $r \leq \min(n,p)$ alors

$$\operatorname{rg}(A) = r \iff \exists (P, Q) \in \operatorname{GL}_n(\mathbb{K}) \times \operatorname{GL}_p(\mathbb{K}) \text{ tel que, par blocs,}$$

$$rg(A) = r \iff \exists (P,Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K}) \text{ tel que, par blocs,}$$

$$PAQ = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}.$$

(A) car P et Q sont in-La réciproque découle de l'égalité r versibles.

Pour le sens direct il suffit de signaler qu'un pivot à la fois sur les lignes et les colonnes de A permet de transformer A en $\begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$.

7. Exponentielle de matrice Si
$$A \in \mathfrak{M}_n(\mathbb{K})$$
 où \mathbb{K} est l'un des corps \mathbb{R} ou \mathbb{C} alors la suite $\left(\sum_{k=0}^p \frac{A^k}{k!}\right)_{p \in \mathbb{N}}$ est

toujours convergente et on note $\exp(A)$ sa limite. Une détermination explicite de $\exp(A)$ tourne toujours autour du calcul des puissances de A, ce qui est assez aisé lorsque A est diagonalisable.

Supposons donc A diagonalisable et envisageons deux cas.

traux et alors
$$\forall k \in \mathbb{N}, A^k = \sum_{\lambda \in \operatorname{Sp}(A)} \lambda_{\lambda}^k$$
 d'où $\exp(A) = \sum_{\lambda \in \operatorname{Sp}(A)} e^{\lambda} P_{\lambda}$.

Ou bien on a la décomposition $A = \sum_{\lambda \in \operatorname{Sp}(A)} \lambda P_{\lambda}$ à l'aide des projecteurs spectraux et alors $\forall k \in \mathbb{N}, \ A^k = \sum_{\lambda \in \operatorname{Sp}(A)} \lambda_{\lambda}^k$ d'où $\exp(A) = \sum_{\lambda \in \operatorname{Sp}(A)} e^{\lambda} P_{\lambda}$. Ou bien $A = P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{-1}, \ \forall k \in \mathbb{N}, \ A^k = P \operatorname{Diag}(\lambda_1^k, \dots, \lambda_n^k) P^{-1}$ d'où $\exp(A) = P \operatorname{Diag}(e^{\lambda_1}, \dots, e^{\lambda_n}) P^{-1}$.

8. Si $A \in \mathfrak{M}_n(\mathbb{R})$ et $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$ alors n est un entier pair.

En effet la décomposition de χ_A en produit de facteurs irréductibles ne comporte que des trinômes à discriminant négatif, c'est donc un polynôme de degré pair et $n = \deg(\chi_A)$.

9. Centre de $\mathcal{L}(E)$ si E est de dimension finie

$$\{u \in \mathcal{L}(E) \mid \forall v \in \mathcal{L}(E), u \circ v = v \circ u\} = \text{Vect}(Id).$$

Soit (e_1, \ldots, e_n) une base de E et $v \in \mathcal{L}(E)$ dont la matrice dans (e_1, \ldots, e_n) est $Diag(1,\ldots,n)$.

Si $u \in \mathcal{L}(E)$ et $u \circ v = v \circ u$ alors tout sous-espace propre de v est stable par uet comme v n'admet que des sous-espaces propres de dimension 1 cela prouve que la matrice de u dans (e_1, \ldots, e_n) est diagonale, soit $\text{Diag}(\mu_1, \ldots, \mu_n)$.

Ceci est valable pour toute base. En reprenant la base précédente si $k \in [2, n]$ le raisonnement précédent montre que $e_1 + e_k$ est vecteur propre de u car on peut compléter la famille libre $(e_1, e_1 + e_k)$ en une base.

Par suite $\exists \mu \in \mathbb{K}$ tel que $u(e_1+e_k) = \mu(e_1+e_k)$ d'où $(\mu_1-\mu)e_1+(\mu_k-\mu)e_k = 0$ puis $\mu_1 = \mu_k = \mu$ d'où $u \in \text{Vect}(Id)$.

Réciproquement tout élément de Vect(Id) convient.

10. Inverse d'un polynôme de matrice

Soient $A \in \mathfrak{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$ tels que $P(A) \in GL_n(\mathbb{K})$.

L'application $\Phi : \mathbb{K}[A] \to \mathbb{K}[A]$, $B \mapsto P(A)B$ est un endomorphisme et $\Phi(B) = 0 \Rightarrow B = 0$ car P(A) est inversible. Comme $\mathbb{K}[A]$ est de dimension finie l'endomorphisme injectif Φ est un automorphisme. Alors $\Phi^{-1}(I_n)$ est l'inverse de P(A). Par suite $P(A)^{-1}$ est un polynôme en A.

11. Polynôme caractéristique

Si
$$A \in \mathfrak{M}_{p,q}(\mathbb{K})$$
 et $B \in \mathfrak{M}_{q,p}(\mathbb{K})$ alors $X^q \chi_{AB}(X) = X^p \chi_{BA}(X)$.
En effet $\begin{pmatrix} A & XI_p \\ I_q & 0_{q,p} \end{pmatrix} \begin{pmatrix} -B & XI_q \\ I_p & -A \end{pmatrix} = \begin{pmatrix} XI_p - AB & 0 \\ \star & XI_q \end{pmatrix} = M$ et $\begin{pmatrix} -B & XI_q \\ I_p & -A \end{pmatrix} \begin{pmatrix} A & XI_p \\ I_q & 0_{q,p} \end{pmatrix} = \begin{pmatrix} XI_q - BA & \star \\ 0 & XI_p \end{pmatrix} = N$ et , par propriété du déterminant $\det(M) = \det(N)$. Cela s'écrit, à cause des structures triangulaires par blocs, $X^q \chi_{AB}(X) = X^p \chi_{BA}(X)$.

Exercice 1.

Soient $n \in \mathbb{N}$ avec $n \ge 3$ et U_n l'ensemble des racines n-ièmes de l'unité.

- a) Combien de triangles distincts peut-on former avec les éléments de U_n ?
- b) Combien de triangles rectangles distincts peut-on former avec les éléments de U_n ?

•••••

- a) Un triangle est déterminé par ses trois sommets et U_n est de cardinal n, il y a donc $\binom{n}{3}$ triangles à sommets dans U_n , soit $\frac{n(n-1)(n-2)}{6}$ triangles.
- b) Pour qu'un triangle à sommets dans $\mathbb U$ soit rectangle il faut et il suffit qu'un de ses côtés soit diamètre de $\mathbb U$, cela impose la parité de n, soit n=2m. On choisit un sommet dans $\left\{e^{\frac{ik\pi}{m}} \mid 0\leqslant k\leqslant m-1\right\}$ et, aussitôt, son opposé. Il y a ainsi m choix. Reste à choisir le dernier sommet dans un ensemble de cardinal 2m-2. Il y a donc m(2m-2) ou encore $\frac{n(n-2)}{2}$ triangles rectangles lorsque n est pair égal à 2m.

Exercice 2.

- a) Montrer, pour tout entier $n \in \mathbb{N}^*$, l'existence et l'unicité d'un polynôme P_n tel que $P_n\left(X + \frac{1}{X}\right) = X^n + \frac{1}{X^n}$.
- b) Décomposer en éléments simples la fraction rationnelle $\frac{1}{P_n}$.

•••••

a) Tout d'abord $\varphi: x \mapsto x + \frac{1}{x}$ est surjective de $\mathbb C$ sur lui-même car, si $y \in \mathbb C$, alors $x + \frac{1}{x} = y \iff x^2 - yx + 1 = 0$ (x = 0 n'est pas solution de la dernière équation). Cette équation est polynomiale de degré 2 et admet au moins une solution dans $\mathbb C$.

Commençons par l'unicité. Si P_n et Q_n sont solutions alors $P_n \circ \varphi - Q_n \circ \varphi = 0$ sur \mathbb{C} et, comme φ est surjective cela prouve que $P_n = Q_n$.

Procédons par récurrence pour l'existence et posons $Y = X + \frac{1}{X}$.

 $P_1(Y) = Y$ et $P_2(Y) = Y^2 - 2$ conviennent.

Supposons, pour un entier n fixé, $n \ge 2$, établie l'existence de (P_{n-1}, P_n) .

$$\left(X^{n} + \frac{1}{X^{n}}\right)\left(X + \frac{1}{X}\right) = X^{n+1} + \frac{1}{X^{n+1}} + X^{n-1} + \frac{1}{X^{n-1}}$$
 et, donc,

 $P_{n+1}(Y) = Y P_n(Y) - P_{n-1}(Y)$ convient. Cela établit l'existence de $(P_n)_{n \geqslant 1}$.

Remarque : une récurrence immédiate montre que, pour tout $n \in \mathbb{N}^*$, le polynôme P_n est de degré n et de coefficient dominant 1.

b) On utilise encore la surjectivité de φ pour déterminer les zéros de P_n . $P_n(\varphi(x)) = 0 \iff x^{2n} = -1 \iff x \in \left\{e^{i\theta_k} \mid k \in \llbracket 0, 2n-1 \rrbracket\right\}$ où l'on a posé $\theta_k = \frac{1+2k}{2n} \pi$.

De plus $e^{i\theta k} + e^{-i\theta_k} = 2i\sin(\theta_k)$ et $k \mapsto \theta_k$ est strictement croissante de [0, n-1] dans $]0, \pi[$, par suite $\{2i\sin(\theta_k) \mid k \in [0, n-1]\}$ est un ensemble de cardinal n constitué de zéros de P_n .

On en déduit
$$P_n(Y) = \prod_{k=0}^{n-1} (Y - y_k)$$
 où $y_k = 2i\sin(\theta_k)$.

Comme
$$P_n$$
 est scindé à racines simples il vient $\frac{1}{P_n(Y)} = \sum_{k=0}^{n-1} \frac{1}{P_n'(y_k)(Y-y_k)}$.

Exercice 3.

Donner un exemple de polynôme $P \in \mathbb{R}[X]$ non constant tel que, pour tout $r \in \mathbb{R}$, P + r ne soit pas scindé à racines simples sur \mathbb{R} .

•••••

Si $P = X^3$ et $r \in \mathbb{R}$ on distingue deux cas.

Si r = 0 alors 0 est racine triple de P.

Si $r \neq 0$ soit α un nombre réel tel que $\alpha^3 = -r$.

Alors $P + r = X^3 - \alpha^3 = (X - \alpha)(X - \alpha j)(X - \alpha \bar{\jmath})$ et, comme $\alpha \neq 0$, le nombre complexe αj n'est pas réel.

Exercice 4.

Soit $P \in \mathbb{C}[X]$ non nul et vérifiant $(E) : P(X^2) = P(X)P(X+1)$.

- a) Montrer que P est unitaire.
- **b)** Montrer que l'ensemble des racines de P est stable par $z \mapsto z^2$.
- c) Montrer que, si λ est une racine non nulle de P, alors $|\lambda| = 1$.
- **d)** Montrer que $\{z \in \mathbb{C} \mid |z| = |z-1| = 1\}$ est constitué de deux points à expliciter.
- e) Trouver tous les polynômes complexes vérifiant (E).

•••••

- a) Si P est de degré n et de coefficient dominant α alors les coefficients de X^{2n} de $P(X^2)$ et de P(X)P(X+1) sont α et α^2 . Comme $\alpha \neq 0$ cela impose $\alpha = 1$.
- **b)** Si P(z) = 0 alors $P(z^2) = P(z)P(z+1) = 0$.
- **c)** Si $P(\lambda) = 0$ alors $\forall n \in \mathbb{N}, \ P(\lambda^{(2^n)}) = 0$ et donc $\{\lambda^{(2^n)} \mid n \in \mathbb{N}\}$ est fini, a fortiori $\{|\lambda|^{2^n} \mid n \in \mathbb{N}\}$ est fini.

Or si $|\lambda| \notin \{0,1\}$ alors $n \mapsto |\lambda|^{2^n}$ est strictement monotone sur \mathbb{N} , ce qui est exclu. Donc $P(\lambda) = 0 \Rightarrow |\lambda| \in \{0,1\}$.

- d) L'ensemble est l'intersection des cercles de rayon 1 centrés en 0 et 1. Si z est élément de cet ensemble alors le triangle de sommets 0, z et 1 est équilatéral donc $z \in \{-j, -\bar{\jmath}\}$. Réciproquement les deux points de cet ensemble sont solutions.
- e) Si P(z) = 0 et $z \notin \{0,1\}$ alors $P((z-1)^2) = P(z-1)P(z) = 0$ et, donc, $(z-1)^2$ est zéro non nul de P d'où |z-1| = 1. D'autre part |z| = 1 et donc $z \in \{-j, -\overline{j}\}$.

Comme ni $(-j)^2$ ni son conjugué ne sont éléments de $\{0,1,-j,-\overline{\jmath}\}$ il y a contradiction. En définitive $P(z)=0\Rightarrow z\in\{0,1\}$.

Enfin si $P=X^a(X-1)^b$ où $(a,b)\in\mathbb{N}^2$ alors $P(X^2)=X^{2a}(X-1)^b(X+1)^b$ et $P(X)P(X+1)=X^a(X-1)^b(X+1)^aX^b$ d'où, nécessairement, a=b.

En définitive l'ensemble des solutions de (E) est $\{0\} \cup \{X^a(X-1)^a \mid a \in \mathbb{N}\}$.

Exercice 5.

Soient $N \in \mathbb{N}^*$, $P, Q \in \mathbb{R}[X]$ tels que $(1 + iX)^n = P + iQ$ et $(a, b) \in (\mathbb{R}^*)^2$. Montrer que aP + bQ est scindé sur \mathbb{R} .

•••••

Déjà $2P = (1+iX)^n + (1-iX)^n$ et $2Q = -i(1+iX)^n + i(1-iX)^n$. Soit z un zéro de aP + bQ, alors $(a-ib)(1+iz)^n + (a+ib)(1-iz)^n = 0$. z = -i est impossible car $a - ib \neq 0$.

On obtient donc $\left(\frac{1+iz}{1-iz}\right)n = -\frac{a+ib}{a-ib} = e^{i\theta}$ pour un réel θ approprié car a+ib et a-ib ont même module.

Par suite il existe $k \in \mathbb{N}$ tel que $\frac{1+iz}{1-iz} = e^{i\theta_k}$ où l'on a posé $\theta_k = \frac{\theta+2k\pi}{n}$.

Alors $iz(1+e^{i\theta_k})=e^{i\theta_k}-1$ puis $iz=\frac{e^{i\theta_k}-1}{e^{i\theta_k}+1}=i\tan\left(\frac{\theta_k}{2}\right)$ et donc $z\in\mathbb{R}$.

Cela prouve que aP + bQ est scindé sur \mathbb{R} .

Exercice 6.

Soit $P \in \mathbb{R}[X]$ un polynôme de degré n et (a_0, \ldots, a_n) un (n+1)-uplet de réels tous distincts. Montrer que $(P(X+a_0), P(X+a_1), \ldots, P(X+a_n))$ est une base de $\mathbb{R}_n[X]$.

•••••

Remarquons que, par raison de degrés, la famille $(P, P', \dots, P^{(n)})$ est une base de $\mathbb{R}_n[X]$; notons la \mathcal{B} .

Si $0 \le j \le n$ la formule de Taylor montre que $P(X + a_j) = \sum_{i=0}^n \frac{a_j^i}{i!} P^{(i)}(X)$ et, donc, la matrice de $(P(X + a_0), P(X + a_1), \dots, P(X + a_n))$ dans la base

 \mathcal{B} est $\left(\frac{a_j^i}{i!}\right)_{0\leqslant i,j\leqslant n}$ dont le déterminant est $\frac{\operatorname{Vdm}(a_0,\ldots,a_n)}{0!1!2!\cdots n!}$ où Vdm désigne le déterminant de Vandermonde.

Comme les a_j sont supposés deux à deux distincts ce déterminant est non nul, cela établit le résultat.

Exercice 7.

Soient $x_1 < x_2 < \cdots < x_n$ des réels.

- a) Soit $\varphi: x \mapsto |x x_1| + \dots + |x x_n|$. Montrer que φ est continue sur \mathbb{R} et qu'elle possède un minimum.
- **b)** On pose, pour $k \in [1, n]$, $f_k : x \mapsto |x x_k|$. Montrer que la famille (f_1, \ldots, f_n) est libre.

•••••

a) Comme les translations sont continues et que la valeur absolue l'est aussi, par composition et somme φ et continue.

De plus si $x \to \pm \infty$ alors $\varphi(x) \to +\infty$. Soit alors A > 0 tel que, en dehors de [-A, A] on a $\varphi(x) \geqslant \varphi(0) + 1$.

- φ est continue sur le segment [-A,A] et y admet donc un minimum qui est inférieur à $\varphi(0)$, c'est donc un minimum global.
- b) Supposons que (f_1, \ldots, f_n) soit liée. Il existe des réels $\lambda_1, \ldots, \lambda_n$ non tous nuls tels que $\sum_{k=1}^n \lambda_k f_k$ est nulle.

Soit $i \in \llbracket 1, n \rrbracket$ tel que $\lambda_i \neq 0$, la fonction f_i est égale à $-\sum_{k \in \llbracket 1, n \rrbracket \setminus \{i\}} \frac{\lambda_k}{\lambda_i} f_i$ et est donc dérivable en x_i : c'est absurde.

Exercice 8.

Soient $A, B \in \mathfrak{M}_3(\mathbb{R})$ telles que $\det(A)$, $\det(B)$, $\det(A - B)$ et $\det(A + B)$ sont nuls. Montrer que $\forall (x, y) \in \mathbb{R}^2$, $\det(xA + yB) = 0$.

•••••

 $\det(A + yB) \in \mathbb{R}_3[y]$ et le coefficient de y^3 est nul car égal à $\det(B)$. Donc $\det(A + yB) \in \mathbb{R}_2[y]$ et est nul en 0, 1 et -1, donc c'est le polynôme nul. De même $\forall y \in \mathbb{R}$, $\det(-A + yB) = 0$.

Fixons y dans \mathbb{R} . De la même façon $\det(xA+yB) \in \mathbb{R}_2[x]$ car le coefficient de x^3 est $\det(A)$ et ce polynôme est nul en 0, 1 et -1, donc nul.

Exercice 9.

On definit, pour
$$n \ge 2$$
 et $x \in \mathbb{R} : D_n(x) = \begin{bmatrix} x & 1 & (0) \\ x^2/2! & x & 1 \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & & x & 1 \\ x^n/n! & \cdots & \cdots & x^2/2! & x \end{bmatrix}$.

Montrer que D_n est dérivable et calculer D'_n . En déduire la valeur de D_n .

•••••

Tout d'abord D_n est dérivable car polynomiale.

Notons, si $k \in [1, n]$, $C_k(x)$ la k-ième colonne de la matrice associée, C_k est une application dérivable et, par n-linéarité du déterminant il vient, avec une notation allégée :

$$D'_{n} = [C'_{1}, C_{2}, \dots, C_{n}] + [C_{1}, C'_{2}, C_{3}, \dots, C_{n}] + \dots + [C_{1}, \dots, C_{n-2}, C'_{n-1}C_{n}] + [C_{1}, \dots, C_{n-1}, C'_{n}]$$
$$= [C_{1}, \dots, C_{n-1}, C'_{n}]$$

car, si $k \leq n-1$, $C_k' = C_{k+1}$ et parce que le déterminant est alterné.

En développant selon la dernière colonne qui n'est autre que $(0 \cdots 0 1)^T$ on en déduit $D'_n = D_{n-1}$ en posant $D_1 = x$.

Comme
$$\forall n \in \mathbb{N}^*$$
, $D_n(0) = 0$, par intégrations successives, $D_n(x) = \frac{x^n}{n!}$.

Exercice 10.

Soit $A \in \mathfrak{M}_3(\mathbb{R})$ une matrice non nulle telle que $A^2 = 0$. Déterminer la dimension de $C_A = \{ M \in \mathfrak{M}_3(\mathbb{R}) \mid AM = MA \}$.

•••••

Soit u un endomorphisme non nul de \mathbb{R}^3 de carré nul.

 $u \circ u = 0 \Rightarrow \text{Im}(u) \subset \text{Ker}(u)$ et donc, d'après le théorème de rang, on a $\text{rg}(u) \leqslant 3) - \text{rg}(u)$ d'où $1 \leqslant \text{rg}(u) \leqslant 3/2$ et, enfin, rg(u) = 1 et donc, aussi, dim (Ker(u)) = 2.

On note e_3 un vecteur directeur d'un supplémentaire de $\operatorname{Ker}(u)$ dans \mathbb{R}^3 . Comme u réalise un isomorphisme de $\mathbb{R}e_3$ sur $\operatorname{Im}(u)$, le vecteur $u(e_3)$ engendre $\operatorname{Im}(u)$; on le note e_1 et on le complète en (e_1, e_2) base de $\operatorname{Ker}(u)$. Alors (e_1, e_2, e_3) est une base de \mathbb{R}^3 et la matrice de u dans cette base est

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ par construction }; \text{ notons la } N.$$

Soit v un endomorphisme de \mathbb{R}^3 . Si u et v commutent alors $\mathrm{Ker}(u)$ et $\mathrm{Im}(u)$ sont stables par v et la matrice de v dans la même base est nécessairement de

la forme
$$\begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$
; notons la V .