QCM biologie

1. Biomolécules et Techniques Biochimiques

1. La biochimie comprend l'étude :

- A. Du protéome, c'est-à-dire de l'ensemble des protéines exprimées par une cellule
- B. Du génome, c'est-à-dire de l'ensemble du matériel génétique
- C. Du métabolome, c'est-à-dire de l'ensemble des petites molécules et des métabolites
- D. Du transcriptome, c'est-à-dire de l'ensemble des gènes
- E. Des bases moléculaires de la vie

2. La Biochimie:

- A. Etudie les différentes cellules d'un organisme et les réactions chimiques qui s'y déroulent
- B. Permet l'établissement de diagnostics
- C. Rend possible la préparation de nouveaux médicaments et donc les traitements
- D. Permet l'étude du mode de transfert de l'information génétique
- E. Permet des études in vitro, in vivo et ex vivo

3. L'eau:

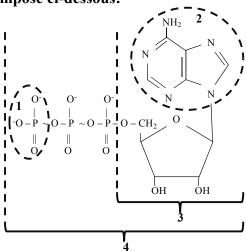
- A. Est un solvant
- B. Etablit des liaisons hydrogènes avec les molécules polaires
- C. Permet la dissolution de sels métalliques
- D. Est électriquement chargée
- E. Solubilise les molécules hydrophobes

4. Parmi les groupements fonctionnels suivant :

A. « 1 » est un groupement commun à tous les glucides

B. « 2 », « 3 » et « 5 » possèdent tous les trois un carbonyle

C. « 3 » est un groupement cétone


D. « 4 » est un groupement phényle

E. « 5 » est un groupement caractéristique d'une liaison peptidique

5. Parmi les propositions ci-dessous, laquelle (lesquelles) est (sont) caractéristiques des oses simples ?

- A. $C_n(H_2O)_n$
- B. n-2 fonctions alcool
- C. 1 fonction carbonyle
- D. De 3 à 9 atomes de carbone
- E. Au moins 1 fonction amine

6. A propos du composé ci-dessous:

- A. (1) est un acide phosphorique
- B. (2) est un acide aminé
- C. (3) est un nucléoside
- D. (4) est un nucléoside triphosphate
- E. (4) est un nucléotide

7. Molécules

- A. L'adénine est un acide nucléique
- B. L'adénosine est un nucléotide
- C. L'adénine est la 6-aminopurine
- D. La cytosine est la 2-oxo-4-aminopyrimidine
- E. La thymine est une base purique

8. Molécules

- A. Le ribose est un polyoside
- B. Certains acides aminés peuvent être des neurotransmetteurs
- C. Le phosphatidyl inositol est une molécule que l'on classe dans les glucides
- D. Un oligoside est un sous-groupe des holosides
- E. L'adénosine triphosphate (ATP) est un nucléoside

9. Le composé suivant:

$$\begin{array}{c} NH_2 \\ | \\ HS-CH_2-CH-COOH \end{array}$$

- A. Une base azotée
- B. Un acide aminé basique
- C. Un composé à fonction thiol
- D. Une molécule ionisable
- E. Un composé essentiel

10. Molécules informatives

- A. Le NO est un neurotransmetteur
- B. L'histamine est un neurotransmetteur dérivé de l'histidine
- C. L'histamine est un médiateur à action locale
- D. Les hormones sont des médiateurs sécrétés par des cellules endocrines
- E. L'AMPc est un médiateur à action locale

11. L'AMPc:

- A. Est un nucléotide
- B. Est un nucléoside monophosphate cyclique
- C. Contient un ribose et deux liaisons anhydres phosphoriques
- D. Contient un désoxyribose, une liaison ester phosphorique et une liaison anhydre d'acide
- E. Est synthétisé par l'adénylate cyclase

12. Le glycérol "CH2OH-CHOH-CH2OH":

- A. Est un polyalcool
- B. Est un acide gras saturé
- C. Est un constituant des triglycérides
- D. Son catabolisme est assuré par la β-oxydation
- E. Est un précurseur de coenzymes

13. La formule de l'acide lactique ci-dessous est :

- A. Une formule brute
- B. Une formule semi-développée
- C. Une formule développée
- D. Une projection de Fisher
- E. Une projection de Haworth

14. Parmi les propositions suivantes concernant les récepteurs cocher la (les) réponse(s) exacte(s) :

- A. La molécule d'AMPc constitue le second messager de certaines hormones comme l'adrénaline ou le glucagon.
- B. La stimulation des récepteurs associés à la voie de l'AMPc provoque un changement conformationnel qui se répercute au niveau de la protéine G stimulatrice où le GTP est remplacé par le GDP.
- C. L'activation de la protéine G stimulatrice se traduit par une dissociation de la sous-unité alpha portant le GTP qui va ainsi pouvoir activer l'adénylate cyclase.
- D. Les récepteurs nucléaires sont présents à la surface de la membrane nucléaire de la cellule.
- E. Le complexe hormone-récepteur nucléaire peut pénétrer dans le noyau de la cellule et se fixer à l'ADN sur des séquences appelées HRE : il en résulte une modulation du taux de la transcription du gène correspondant.

15. La Pro-Opiomélanocortine est le précurseur de :

- A. ACTH
- B. Met-enképhaline
- C. Ocytocine
- D. α-MSH
- E. Prolactine

16. Un ionogramme plasmatique normal se présente de la manière suivante :

es atomiques
35,5
61

5 422 1 442					
Cations	mEq.L ⁻¹	Masses atomiques	Anions	mEq.L ⁻¹	Masse
Na^{+}	142	23	Cl ⁻	102	
K^{+}	5	39	HCO ₃	27	
Ca^{2+}	5	40	,		

La différence : (Na⁺ + K⁺) - (Cl⁻ + HCO₃⁻) est appelée « Trou anionique » et représente les anions non dosés en routine (acides organiques, sulfates, phosphates...)

Le trou anionique est augmenté dans les acidoses métaboliques (acidoses lactiques, acidoses des insuffisances rénales, acidocétoses diabétiques...)

- A. La concentration molaire du sodium est donc de 142 mmol.L⁻¹
- B. La concentration massique du sodium est donc de 142 mg.L⁻¹
- C. La concentration molaire du calcium est donc de 40 mmol.L⁻¹
- D. La concentration massique du calcium est donc de 5 mg.L⁻¹
- E. Dans les acidoses métaboliques, le « trou anionique » est supérieur à 16 mEq.L⁻¹

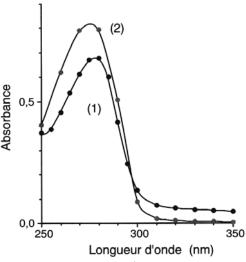
17. Loi de Beer-Lambert

- A. DO représente l'absorbance d'un composé
- B. DO est l'énergie d'absorbance moléculaire et s'exprime en joules par mole par litre
- $C. \ll \epsilon_{\lambda}$ » est le coefficient d'extinction molaire et peut s'exprimer en M^{-1} .cm⁻¹
- D. « c » est la concentration molaire de la substance étudiée
- E. «1» représente le trajet optique de la lumière dans la solution considérée

18. La spectrophotométrie UV et visible :

- A. Est basée sur l'absorption de lumière à certaines longueurs d'onde par les composés biologiques
- B. A pour principe la mesure de l'émission d'un rayonnement par une molécule donnée
- C. Permet de détecter certains composés au sein d'un mélange hétérogène de molécules
- D. Permet le dosage de molécules biologiques en solution par l'utilisation de la loi de Beer-Lambert
- E. Est une technique de mesure dénaturante pour les protéines

19. Spectrofluorimétrie


- A. Est une technique de mesure dénaturante
- B. Est une technique impliquant une source lumineuse UV
- C. La spectrofluorimétrie peut être utilisée pour le dosage de molécules non fluorescentes
- D. L'application de la spectrofluorimétrie à la quantification implique d'établir une gamme étalon
- l'intensité de mesure de fluorescence est réalisée perpendiculairement à la direction de la lumière incidente
- 20. Une solution pure d'une porphyrine donne une densité optique (absorbance) de 4 mesurée à 404 nm. Après dilution au 1/10^{ième} et 1/20^{ième}, la densité optique (absorbance) mesurée est de 0,54 et de 0,27 respectivement.

La cuve de spectrophotométrie a un trajet optique de 1 cm. Sachant que le coefficient d'extinction molaire est de 540 mmol⁻¹.L.cm⁻¹ et que le PM du composé est 563, cocher la (les) réponse(s) exacte(s) parmi les propositions suivantes concernant la concentration de la solution pure :

- A. 5,63 mg.L⁻¹
- B. 56,3 mg.L⁻¹
- C. 5 umol.L⁻¹
- D. 0,01 mmol.L⁻¹
- E. aucune proposition n'est exacte

21. La figure ci-dessous représente le tracé du spectre d'absorption d'une solution d'albumine à 1 g.L⁻¹ (1) et celui d'une solution de tryptophane à 30 mg.L⁻¹ (2).

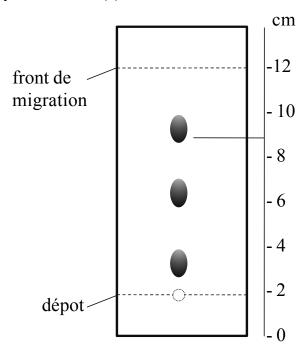
L'albumine contient 1 % de tryptophane (pourcentage en masse)

Données: $M_{\text{tryptophane}} = 204 \text{ g.mol}^{-1}$; $M_{\text{albumine}} = 60000 \text{ g.mol}^{-1}$

- A. La longueur d'onde correspondant au maximum d'absorption du tryptophane est 280 nm
- B. La longueur d'onde correspondant au maximum d'absorption du tryptophane est 0,8
- C. La longueur d'onde correspondant au maximum d'absorption du tryptophane est 350 nm
- D. La longueur d'onde correspondant au maximum d'absorption de la solution d'albumine est 250 nm
- E. La longueur d'onde correspondant au maximum d'absorption du tryptophane est 0,7

22. Relative à la figure de la question n°21

- A. Le coefficient spécifique d'absorbance molaire du tryptophane au maximum d'absorption est 5440 mol⁻¹.L.cm⁻¹
- B. Le coefficient spécifique d'absorbance molaire du tryptophane au maximum d'absorption est 204 mol⁻¹.L.cm⁻¹
- C. Le coefficient spécifique d'absorbance molaire du tryptophane au maximum d'absorption est 2,67.10⁻⁵ mol⁻¹.L.cm⁻¹
- D. Le coefficient spécifique d'absorbance molaire du tryptophane au maximum d'absorption est 1,84.10⁻⁴ mol⁻¹.L.cm⁻¹
- E. Le coefficient spécifique d'absorbance molaire du tryptophane au maximum d'absorption est 47600 mol⁻¹.L.cm⁻¹


23. Relative à la figure de la question n°21

Si le tryptophane était le seul acide aminé responsable de l'absorption de l'albumine à cette longueur d'onde :

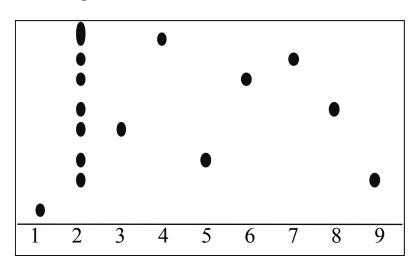
- A. L'absorbance au maximum d'absorption de la solution d'albumine à $1g.L^{-1}$ serait 9,067.10⁻⁴
- B. L'absorbance au maximum d'absorption de la solution d'albumine à 1g.L⁻¹ serait 7,9.10⁻⁴
- C. L'absorbance au maximum d'absorption de la solution d'albumine à 1g.L⁻¹ serait 0,7
- D. L'absorbance au maximum d'absorption de la solution d'albumine à 1g.L⁻¹ serait 26,67
- E. L'absorbance au maximum d'absorption de la solution d'albumine à 1g.L⁻¹ serait 0,267

24. La chromatographie CCM est employée, par exemple dans la séparation des stéroïdes.

Dans l'exemple choisi, on sépare la progestérone (1), la testostérone (2) et l'hydrocortisone (3) dans un éluant méthanol : eau, 70 : 30.

- A. Le RF de l'hydrocortisone est 9 cm
- B. Le RF de la progestérone est 0,1
- C. Le RF et le coefficient de partage des substances 1 et 3 évoluent dans des sens opposés
- D. (2) est plus soluble que (3) dans la phase mobile
- E. La chromatographie présentée est une chromatographie d'affinité

25. Séquençage


Soit le peptide : Tyr-Ala-Met-Trp-Gln-Phe-Ser

- A. Une fragmentation chimique au bromure de cyanogène libère un tripeptide et un tétrapeptide
- B. Une fragmentation chimique à l'acide 2-nitro-5- thiocyanobenzoïque (NTCB) libère un tripeptide et un tétrapeptide
- C. Un marquage au 2,4 dinitrofluorobenzène (DNFB) suivi d'une hydrolyse totale permet d'identifier après chromatographie un résidu sérine
- D. Une hydrolyse acide totale de ce peptide peut permettre l'identification de sept acides aminés
- E. La trypsine est sans effet sur ce peptide

26. On effectue une chromatographie d'adsorption sur couche mince pour séparer et identifier les différents acides aminés d'un peptide Au cours de la chromatographie, on réalise les dépôts suivants :

1	2	3	4	5	6	7	8	9
Peptide	Peptide	Gly	Leu	Pro	Glu	Ile	Asp	Cys
	hydrolysé						_	-

Le chromatogramme obtenu est le suivant

- A. Cette technique renseigne sur la composition quantitative du peptide
- B. Cette technique renseigne sur la composition qualitative du peptide
- C. Cette technique révèle que l'acide aminé le plus positif est la Leucine
- D. Cette technique révèle que l'acide aminé N-terminal est la Cystéine
- E. La leucine présente le Rf le plus élevé