Première partie Énoncés des épreuves

1 ESCP Europe 2014, énoncé

Exercice 1 (probabilités continues)

Soit a un réel strictement positif et f la fonction définie sur $\mathbb R$ à valeurs réelles telle que :

$$f(t) = \begin{cases} 2e^{-2(t-a)} & \text{si } t \ge a \\ 0 & \text{sinon} \end{cases}$$

 ${\bf 1/\ a/\ Soit}\ B$ un réel supérieur ou égal à a. Calculer l'intégrale $\int_a^B 2\mathrm{e}^{-2(t-a)}\,\mathrm{d}t.$

b/ En déduire la valeur de l'intégrale
$$\int_{a}^{+\infty} 2e^{-2(t-a)} dt$$
.

2/ Montrer que f peut être considérée comme une densité de probabilité. Dans la suite, on note X une variable aléatoire admettant f comme densité.

3/ Montrer que la fonction de répartition F_X de X est donnée par :

$$F_X(x) = \begin{cases} 1 - e^{-2(x-a)} & \text{si } x \geqslant a \\ 0 & \text{sinon} \end{cases}$$

4/ On note Y la variable aléatoire définie par : Y = X - a.

 \mathbf{a} / Déterminer la fonction de répartition F_Y de Y.

 \mathbf{b} / En déduire que Y suit une loi exponentielle dont on précisera le paramètre.

 \mathbf{c} / Donner la valeur de l'espérance de Y.

 \mathbf{d} / En déduire que X admet une espérance et donner sa valeur.

Exercice 2 (suite et intégrale)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1$, et pour tout n de \mathbb{N}^* ,

$$u_n = \int_0^1 \left(\ln(1+t)\right)^n \, \mathrm{d}t$$

1/ On note g la fonction définie sur \mathbb{R}_+ à valeurs réelles telle que : pour tout $t \ge 0$,

$$g(t) = (1+t)\ln(1+t) - t$$

a/ On note g' la fonction dérivée de g. Calculer g'(t) pour tout réel $t \ge 0$.

b/ En déduire la valeur de u_1 .

2/ Soit f la fonction définie sur l'intervalle [0,1] à valeurs réelles telle que :

$$f(t) = \ln(1+t)$$

- **a**/ On note f' et f'' respectivement, les dérivées première et seconde de f. Calculer pour tout réel t de $[0\,,1]\,,\,f'(t)$ et f''(t).
- **b**/ Étudier les variations de f sur l'intervalle $[0\,,1]$ et tracer la courbe représentative de f dans le plan rapporté à un repère orthonormé. (on donne : $\ln 2 \simeq 0,7$)
- \mathbf{c} / Montrer que la fonction f est concave sur [0,1].
- 3/a/Justifier pour tout réel t de [0,1], l'encadrement suivant :

$$0 \leqslant \ln(1+t) \leqslant \ln 2$$

- **b**/ Montrer que pour tout n de \mathbb{N}^* , on a : $0 \le u_n \le (\ln 2)^n$.
- **c**/ En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et a pour limite 0.
- 4/ a/ À l'aide d'une intégration par parties, établir pour tout entier naturel n, la relation suivante :

$$u_{n+1} = 2(\ln 2)^{n+1} - (n+1)u_n$$

(on pourra remarquer qu'une primitive de la fonction $t \mapsto 1$ est $t \mapsto 1+t$)

 \mathbf{b} / En déduire que pour tout entier naturel n, on a :

$$(n+1)u_n \leqslant 2\left(\ln 2\right)^{n+1}$$

- **c**/ Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- **d**/ En utilisant la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$, montrer que pour tout n de \mathbb{N} , on a :

$$(n+2)u_n \geqslant 2\left(\ln 2\right)^{n+1}$$

e/ Déterminer $\lim_{n\to+\infty} \frac{nu_n}{2(\ln 2)^{n+1}}$.

Exercice 3 (suites, fonction et matrices)

Soit f la fonction définie sur \mathbb{R}_+ à valeurs réelles telle que : pour tout $x \ge 0$,

$$f(x) = \frac{2x+1}{x+2}$$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=\frac{1}{2},$ et pour tout n de $\mathbb{N},$

$$u_{n+1} = f(u_n)$$

- 1/ a/ On note f' la fonction dérivée de f. Calculer pour tout réel $x \ge 0$, f'(x).
 - **b**/ Dresser le tableau de variation de f en précisant les limites aux bornes de l'ensemble de définition. Placer les réels 1 et f(1) dans ce tableau.

- 12
- **2**/ **a**/ Montrer que pour tout entier naturel n, le réel u_n appartient à l'intervalle [0,1].
 - **b**/ Établir pour tout réel x de [0,1], l'inégalité suivante : $|f'(x)| \leq \frac{3}{4}$.
 - $\mathbf{c}/$ En déduire que pour tout entier naturel n, on a :

$$|u_{n+1} - 1| \leqslant \frac{3}{4} |u_n - 1|$$

 $\mathbf{d}/$ Établir pour tout entier naturel n, l'inégalité suivante :

$$|u_n - 1| \leqslant \frac{1}{2} \times \left(\frac{3}{4}\right)^n$$

- e/ En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.
- 3/ Soit A, J et I les matrices d'ordre 2 suivantes :

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- **a**/ Montrer que $J^2 = 2J$.
- **b**/ Établir pour tout entier naturel n, la relation suivante :

$$A^n = I + \frac{1}{2}(3^n - 1)J$$

(on rappelle que $A^0 = I$)

- \mathbf{c} / Donner sous forme matricielle, l'expression de A^n en fonction de n.
- 4/ On note $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ les deux suites définies par : $p_0=1,\ q_0=2,$ et pour tout n de \mathbb{N} ,

$$\begin{cases} p_{n+1} = 2p_n + q_n \\ q_{n+1} = p_n + 2q_n \end{cases}$$

On considère pour tout n de \mathbb{N} , la matrice à deux lignes et une colonne X_n définie par :

$$X_n = \begin{pmatrix} p_n \\ q_n \end{pmatrix}$$

- **a**/ Établir par récurrence que pour tout n de \mathbb{N} , on a : $X_n = A^n X_0$.
- **b**/ En déduire l'expression de X_n en fonction de n et donner les valeurs de p_n et q_n en fonction de n.
- 5/ a/ À l'aide d'un raisonnement par récurrence, établir pour tout entier naturel n, l'égalité :

$$u_n = \frac{p_n}{q_n}$$

b/ Donner l'expression de u_n en fonction de n et retrouver la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 4 (probabilités discrètes)

Une puce se déplace à chaque unité de temps sur les quatre sommets, numérotés 1, 2, 3 et 4, d'un carré selon le protocole suivant :

- À l'instant 0, la puce se trouve sur le sommet 1.
- Si à l'instant n ($n \ge 0$) la puce se trouve sur le sommet 1, elle sera à l'instant n+1 sur le sommet 1 avec la probabilité $\frac{2}{3}$ et sur le sommet 3 avec la probabilité $\frac{1}{3}$.
- Si à l'instant n $(n \ge 1)$ la puce se trouve sur le sommet 2, elle sera à l'instant n+1 sur le sommet 1 avec la probabilité $\frac{1}{2}$ et sur le sommet 3 avec la probabilité $\frac{1}{2}$.
- Si à l'instant n ($n \ge 1$) la puce se trouve sur le sommet 3, elle sera à l'instant n+1 sur le sommet 2 avec la probabilité $\frac{1}{2}$ et sur le sommet 4 avec la probabilité $\frac{1}{2}$.
- Si à l'instant n ($n \ge 1$) la puce se trouve sur le sommet 4, elle sera à l'instant n+1 sur le sommet 2 avec la probabilité $\frac{1}{3}$ et sur le sommet 4 avec la probabilité $\frac{2}{3}$.

Pour tout entier naturel n, on note X_n la variable aléatoire égale au numéro du sommet occupé par la puce à l'instant n et on a donc $P([X_0 = 1]) = 1$.

- 1/a/ Déterminer la loi de X_1 .
 - **b**/ Calculer l'espérance et la variance de X_1 .
- $\mathbf{2}$ / Déterminer la loi de X_2 .
- 3/ a/ En utilisant la formule des probabilités totales, montrer que pour tout entier n supérieur ou égal à 2, on a :

$$P([X_{n+1} = 1]) = \frac{2}{3}P([X_n = 1]) + \frac{1}{2}P([X_n = 2])$$

- b/ Exprimer de même, pour tout entier n supérieur ou égal à 2, $P([X_{n+1}=2])$, $P([X_{n+1}=3])$, $P([X_{n+1}=4])$ en fonction de $P([X_n=1])$, $P([X_n=2])$, $P([X_n=3])$ et $P([X_n=4])$.
- **c**/ Vérifier que les relations précédentes sont encore valables pour n=1 et n=0.
- \mathbf{d} / Que vaut pour tout n de \mathbb{N} , la somme :

$$P([X_n = 1]) + P([X_n = 2]) + P([X_n = 3]) + P([X_n = 4])$$
?

4/ On pose $U_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et pour tout n de \mathbb{N} , on note U_n la matrice à trois lignes et une colonne définie par :

$$U_n = \begin{pmatrix} P([X_n = 1]) \\ P([X_n = 2]) \\ P([X_n = 3]) \end{pmatrix}$$

De plus, on pose :
$$A = \frac{1}{6} \begin{pmatrix} 4 & 3 & 0 \\ -2 & -2 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

En utilisant les relations trouvées précédemment, établir pour tout n de $\mathbb{N},$ la relation :

$$U_{n+1} = AU_n + B$$

 $\mathbf{5}/\mathbf{a}/\mathbf{D}$ éterminer une matrice L à trois lignes et une colonne vérifiant :

$$L = AL + B$$

 \mathbf{b} / Établir pour tout entier naturel n, la relation suivante :

$$U_n = A^n(U_0 - L) + L$$

6/ On pose C = 6A. Soit R, D et Q les matrices d'ordre 3 définies par :

$$R = \begin{pmatrix} 1 & 1 & 3 \\ -1 & -2 & -1 \\ -1 & 2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} 0 & -5 & -5 \\ -2 & -4 & 2 \\ 4 & 3 & 1 \end{pmatrix}$$

- a/ Calculer RQ. En déduire que R est inversible et donner R^{-1} , où R^{-1} désigne la matrice inverse de la matrice R.
- **b**/ Calculer CR RD.
- \mathbf{c} / En déduire pour tout entier naturel n, la relation suivante :

$$A^n = \left(\frac{1}{6}\right)^n RD^n R^{-1}$$

7/ On admet que la limite de la matrice U_n lorsque n tend vers $+\infty$, est une matrice U dont les coefficients sont obtenus en prenant la limite des coefficients de U_n lorsque n tend vers $+\infty$. Déterminer U et préciser $\lim_{n\to+\infty} P([X_n=4])$.

2 ECRICOME 2014, énoncé

Exercice 1 (suite et fonctions)

On considère les fonctions f et g définies sur $]0, +\infty[$ par :

$$\forall x \in]0, +\infty[, f(x) = 2 - \frac{1}{2}\ln(x) \text{ et } g(x) = f(x) - x.$$

On considère aussi la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1/ Calculer les limites suivantes : $\lim_{x \to 0^+} g(x)$ et $\lim_{x \to +\infty} g(x)$.
- 2/ Calculer g'(x) pour tout $x \in]0, +\infty[$ puis dresser le tableau des variations de g sur $]0, +\infty[$.
- 3/ Prouver que l'équation g(x)=0 admet une unique solution sur $]0\,,+\infty[$. On la note $\alpha.$
- 4/ Justifier que:

$$\alpha \in [1, e]$$
 et $f(\alpha) = \alpha$.

- 5/ Calculer f'(x) pour tout $x \in [0, +\infty)$ et préciser la monotonie de la fonction f.
- 6/ Démontrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad 1 \leqslant u_n \leqslant e.$$

7/ Vérifier que :

$$\forall x \in [1, e], \quad |f'(x)| \leq \frac{1}{2}.$$

En déduire, à l'aide de l'inégalité des accroissements finis, que :

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|.$$

8/ Démontrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad |u_n - \alpha| \leqslant \frac{e - 1}{2^n}.$$

9/ Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.

Exercice 2 (probabilités discrètes)

Cet exercice est composé de deux parties.

La partie I consiste à calculer en fonction de n les termes d'une suite récurrente $(u_n)_{n\geqslant 1}$.

La partie II étudie l'obtention du premier double PILE lors de lancers d'une pièce déséquilibrée.

Les résultats de la partie I peuvent être utilisés librement dans la partie II.

PARTIE I – Étude d'une suite.

On considère la suite $(u_n)_{n\geqslant 1}$ définie par :

$$u_1 = 0$$
, $u_2 = \frac{4}{9}$, et $\forall n \ge 1$, $u_{n+2} = \frac{1}{3}u_{n+1} + \frac{2}{9}u_n$.

On considère également les quatre matrices carrées d'ordre 2 définies par :

$$A = \begin{pmatrix} 0 & 1 \\ \frac{2}{9} & \frac{1}{3} \end{pmatrix}, \quad P = \begin{pmatrix} 3 & -3 \\ 2 & 1 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{1}{9} & \frac{1}{3} \\ -\frac{2}{9} & \frac{1}{3} \end{pmatrix} \quad \text{et} \quad D = QAP$$

ainsi que, pour tout entier naturel $n \ge 1$, les matrices colonnes :

$$X_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$$
 et $Y_n = QX_n$.

- 1/ Vérifier que les matrices PQ et D sont diagonales (les calculs devront être inscrits sur la copie).
- 2/ En déduire que P est inversible et expliciter P^{-1} .
- 3/ Soit $n \ge 1$. Donner, en la justifiant, la relation liant X_{n+1} , A et X_n . Prouver que $PY_n = X_n$. En déduire que :

$$Y_{n+1} = DY_n.$$

4/ Prouver que:

$$\forall n \geqslant 1, \quad Y_n = D^{n-1}Y_1.$$

- 5/ Calculer Y_1 et expliciter les coefficients de la matrice colonne Y_n .
- 6/ En déduire que :

$$\forall n \geqslant 1, \quad u_n = \frac{4}{9} \left[\left(\frac{2}{3} \right)^{n-1} - \left(-\frac{1}{3} \right)^{n-1} \right].$$

PARTIE II – Probabilités discrètes.

On effectue des lancers successifs et indépendants d'une pièce de monnaie pour laquelle la probabilité d'obtenir PILE vaut $\frac{2}{3}$.

On suppose donnée un espace probabilisé muni d'une probabilité P modélisant cette expérience.

Soit n un entier naturel supérieur ou égal à 2. On dit qu'il y a apparition d'un double PILE au rang n si on obtient PILE au (n-1)-ième lancer et PILE au n-ième lancer.

On note: