Sujet 2008

Exercice 1

On munit le plan affine \mathscr{T} d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit S la courbe d'équation :

$$y = \frac{x^2}{3} - \frac{3}{2}$$
.

- 1. Quelle est la nature de *S* ?
- 2. Pour tout couple (u,v) de nombres réels, on note U le point de coordonnées (u,v) et pour tout x dans \mathbb{R} on note M(x) le point de S d'abscisse x.

On pose:

$$f_{\mathrm{U}}(x) = \mathrm{UM}(x)$$
 et $g_{\mathrm{U}}(x) = |f_{\mathrm{U}}(x)|^2$.

- (a) Calculer g_{U} , g'_{U} et g''_{U} . Résoudre l'équation $g''_{U}(x) = 0$.
- (b) Donner le tableau des variations de $f_{\rm u}$.

(On ne cherchera pas à calculer explicitement le ou les nombres réels où $f_{\rm U}$ admet un extremum relatif).

3. On dira qu'un cercle C de centre U et de rayon UM est tangent à S si M est un point de S et si les tangentes en M à C et S coïncident.

Soit U un point du plan n'appartenant pas à S et soit a dans \mathbb{R} .

Montrer que le cercle de centre U et de rayon UM(a) est tangent en M(a) si et seulement si $g'_{U}(a) = 0$.

4. (a) Montrer que tout point n'appartenant pas à *S* est centre d'au moins un et d'au plus 3 cercles tangents à *S*.

8 *Epreuve* 2008

(b) Pour U n'appartenant pas à S, on note n(U) le nombre de réels x pour lesquels le cercle de centre U et de rayon UM(x) est tangent en M(x) à S.

Pour $1 \le i \le 3$, caractériser par une égalité ou une inégalité simple l'ensemble des points U n'appartenant pas à S tels que n(U) = i.

On pourra être amené à discuter selon le signe de $81u^2 - 16v^3$.

Faire un croquis représentant S et les ensembles trouvés.

- 5. (a) Soit a dans \mathbb{R} . On note D(a) la tangente en M(a) à S. Donner une équation de D(a).
 - (b) On note de nouveau U le point de \mathscr{S} de coordonnées (u,v). Discuter en fonction de u et v l'ensemble des solutions de l'équation $U \in D(a)$.
 - (c) On suppose que l'équation $U \in D(a)$ admet deux solutions distinctes a_1 et a_2 . Montrer que, si $UM(a_1) = UM(a_2)$, alors on a u = 0.
 - (d) Soit $U \in \mathscr{I}$.

On suppose maintenant qu'il existe un cercle de centre U tangent à S en deux points distincts M et N de S.

- Montrer que les tangentes à S en M et N sont concourantes, et que si l'on note V leur point d'intersection, on a VM = VN.
- (e) Déterminer l'ensemble des points U n'appartenant pas à S pour lesquels il existe un cercle de centre U tangent à S en deux points distincts de S.

Exercice 2

- 1. Le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$. On considère un triangle ABC dont aucun côté n'est parallèle à l'axe des ordonnées (Oy). A toute droite D non parallèle à (Oy), on associe les points A', B' et C' intersections de D avec les parallèles à (Oy) menées par A, B et C respectivement.
 - Montrer qu'il existe une unique droite D pour laquelle la somme s des longueurs AA' + BB' + CC' est minimale et la caractériser.
- 2. Montrer qu'il existe une droite D pour laquelle la somme s_1 des distances de A, B et C à D est minimale. Montrer que cette droite est unique si ABC n'est pas isocèle et la caractériser.

Sujet 9

Exercice 3

Les comptes « ronds »

Mon boucher ne compte jamais les centimes. Par exemple, j'ai pris 300 g de filet à 34,3 euros le kilo, 240 g de viande hachée à 8,6 euros le kilo et 640 g de blanc de poulet à 12,99 euros le kilo : j'ai payé 10 euros pour le filet, 2 euros pour la viande hachée et 8 euros pour le poulet, soit 20 euros en tout.

- 1. En ramassant deux tickets tombés par terre, le boucher lit :
 - 750 g de côtelettes, 250 g de rôti. Total : 18 euros ;
 - 250 g de côtelettes, 500 g de rôti. Total : 17 euros.

Quels peuvent être les prix possibles pour le kilo de côtelettes et le kilo de rôti ? (on donnera toutes les solutions)

2. Pourquoi est-ce que la donnée de tous les tickets de la journée ne peut en aucun cas permettre de déterminer le prix exact de chacun des produits vendus ?

Corrigé

Exercice 1

1. La courbe S admet pour équation $y = \frac{x^2}{3} - \frac{3}{2}$, c'est-à-dire une équation de la forme y = f(x) où f est une fonction polynôme de degré 2. Dans un repère orthonormé, la courbe représentative d'une telle fonction définie sur \mathbb{R} est une parabole.

Ici, le plan $\mathscr F$ étant muni d'un tel repère, on en déduit :

S est une parabole.

2. (a) On a : U(u,v) et $M(x)\left(x; \frac{x^2}{3} - \frac{3}{2}\right)$. On en tire : $\overline{UM(x)}\left(x - u; \frac{x^2}{3} - \frac{3}{2} - v\right)$ et, le repère étant orthonormé :

$$\|\overline{\text{UM}(x)}\| = \text{UM}(x) = \sqrt{(x-u)^2 + (\frac{x^2}{3} - \frac{3}{2} - v)^2} = f_{\text{U}}(x).$$

Et comme $g_{\mathrm{U}}(x) = [f_{\mathrm{U}}(x)]^2$, on a:

$$g_{\rm U}(x) = (x-u)^2 + \left(\frac{x^2}{3} - \frac{3}{2} - v\right)^2$$

La fonction $g_{\rm U}$ est une fonction polynôme et est donc dérivable sur $\mathbb R$. On a alors, pour tout x réel :

$$g_{U'}(x) = 2 \times (x - u) + 2 \times \frac{2x}{3} \times \left(\frac{x^2}{3} - \frac{3}{2} - v\right)$$
$$= 2x - 2u + \frac{4}{9}x^3 - 2x - \frac{4}{3}vx = \frac{4}{9}x^3 - \frac{4}{3}vx - 2u$$

Donc:

$$g_{\rm U}'(x) = \frac{4}{9}x^3 - \frac{4}{3}vx - 2u$$

alors, pour tout x réel :

La fonction $g_{_{\mathrm{U}}}$ ' est aussi une fonction polynôme et est de fait dérivable sur $\mathbb R$. On a

$$g_{\text{U}}"(x) = \frac{4}{9} \times 3x^2 - \frac{4}{3}v = \frac{4}{3}(x^2 - v)$$

Soit:

$$g_{\rm U}"(x) = \frac{4}{3}(x^2 - v)$$

On a:

$$g_{\rm u}"(x) = 0 \iff \frac{4}{3}(x^2 - v) = 0 \iff x^2 - v = 0.$$

Plusieurs cas doivent alors être envisagés :

- Si v < 0, l'équation n'admet pas de solution réelle ;
- Si v = 0, l'équation admet une unique solution : 0;
- Si v > 0, l'équation admet deux solutions réelles : $-\sqrt{v}$ et \sqrt{v} .
- (b) $f_{\rm U}$ prend des valeurs positives (il s'agit d'une distance !). On peut donc écrire, pour tout x réel: $f_{\rm U}(x) = \sqrt{g_{\rm U}(x)}$. Ainsi, la fonction $f_{\rm U}$ apparaît-elle comme la composée de la fonction $g_{\scriptscriptstyle \mathrm{U}}$ par la fonction racine carrée qui est strictement croissante sur \mathbb{R}^+ . On en déduit que les fonctions f_{U} et g_{U} ont le même sens de variation.

Comme nous avons calculé les deux premières dérivées de la fonction $g_{\scriptscriptstyle
m U}$ à la question précédente, nous allons exploiter ces résultats pour déterminer les variations de cette fonction.

Nous avons vu, à la question précédente, que le nombre de solutions de l'équation $g_{\rm U}$ "(x) = 0 dépendait de v. Au-delà de ces solutions, c'est maintenant le signe de $g_{\rm u}$ "(x) qui nous intéresse.

$$1^{\text{er}} \cos : v \le 0$$

Dans ce cas, on a, pour tout x réel: $g_{U}(x) \ge 0$. Le seul cas éventuel où $g_{U}(x)$ s'annule correspond à la situation : x = v = 0. On en déduit que la fonction g_U est strictement croissante sur \mathbb{R} .

Rappelons que l'on a, pour tout x réel : $g_U'(x) = \frac{4}{9}x^3 - \frac{4}{3}vx - 2u$.

La fonction g_{U}' est continue sur $\mathbb R$ en tant que fonction polynôme.

Nous venons de voir qu'elle y était strictement croissante.

Enfin, on a : $\lim_{x \to -\infty} g_{\mathrm{U}}'(x) = \lim_{x \to -\infty} \frac{4}{9} x^3 = -\infty$ et, de façon analogue : $\lim_{x \to +\infty} g_{\mathrm{U}}'(x) = +\infty$.

Le théorème des valeurs intermédiaires nous permet alors d'affirmer qu'il existe un unique réel α tel que $g_{U}'(\alpha) = 0$.

Comme la fonction g_{U} ' est strictement croissante sur $\mathbb R$, on en déduit facilement son signe.

- Pour tout x réel de $]-\infty;\alpha[$, on a : $g_{U}(x)<0$;
- $g_{\mathrm{U}}'(\alpha) = 0$;
- Pour tout x réel de $\alpha; +\infty$, on a : $g_{U}(x) > 0$.

Les variations de g_U en découlent directement :

- Sur $]-\infty;\alpha]$, la fonction g_U est strictement décroissante ;
- Sur $[\alpha; +\infty[$, la fonction g_U est strictement croissante.

Pour pouvoir dresser le tableau des variations demandé, il nous reste à calculer les limites en $-\infty$ et en $+\infty$.

Pour tout *x* réel, on a :
$$g_{\rm U}(x) = (x-u)^2 + \left(\frac{x^2}{3} - \frac{3}{2} - v\right)^2$$
.

La fonction g_U est une fonction polynôme de degré 4 et le terme de degré 4 est $\frac{x^4}{9}$.

On a donc:
$$\lim_{x \to \pm \infty} g_U(x) = \lim_{x \to \pm \infty} \frac{x^4}{9} = +\infty$$
.

D'où, finalement, le tableau :

X	-∞
$g_{\mathrm{U}}"(x)$	+ +
g_{U} '	-∞ <u> </u>
$g_{\mathrm{U}}'(x)$	- 0 +
$g_{\scriptscriptstyle ext{U}}$	$+\infty$ $g_{\mathrm{U}}(\alpha)$ $+\infty$
$f_{ m U}$	$f_{\mathrm{U}}(\alpha)$ $+\infty$

CORRIGÉ 2008

 $2^{nd} cas : v > 0$

Dans ce cas, on a:

- Pour tout x réel de $\left]-\infty;-\sqrt{v}\right[\cup\left]\sqrt{v};+\infty\right[$, on a : g_{U} "(x)>0;
- $g_{\rm U}"(-\sqrt{v}) = g_{\rm U}"(\sqrt{v}) = 0$;
- Pour tout x réel de $\left] -\sqrt{v}; \sqrt{v} \right[$, on a : $g_{\mathbf{U}}''(x) < 0$.

On en déduit :

- Sur $]-\infty;-\sqrt{v}]$ la fonction g_{U}' est strictement croissante;
- Sur $\left[-\sqrt{v}; \sqrt{v}\right]$, la fonction g_{U}' est strictement décroissante ;
- Sur $\lceil \sqrt{v}; +\infty \rceil$, la fonction g_{U}' est strictement croissante.

Ainsi, pour pouvoir déterminer le signe de g_{u} ', il convient de discuter suivant les signes de $g_{U'}(-\sqrt{v})$ et $g_{U'}(\sqrt{v})$ en tenant compte de $g_{U'}(\sqrt{v}) < g_{U'}(-\sqrt{v})$.

Si
$$0 \le g_{\mathrm{U}}'(\sqrt{v}) < g_{\mathrm{U}}'(-\sqrt{v})$$

- o Sur $\left]-\infty;-\sqrt{v}\right]$ la fonction $g_{_{\mathrm{U}}}$ ' est strictement croissante et on a : $\lim_{x \to \infty} g_{\rm U}'(x) = -\infty$ et $g_{\rm U}'(-\sqrt{v}) > 0$. Le théorème des valeurs intermédiaires nous permet ici encore de conclure qu'il existe un unique réel α dans $]-\infty;-\sqrt{v}[$ tel que $g_{\rm U}'(\alpha) = 0$. De la croissance de $g_{\rm U}'$, on tire :
 - $g_{\mathrm{U}}'(x) < 0 \text{ sur }]-\infty;\alpha[$;
 - $g_{\text{II}}'(\alpha) = 0$;
 - $g_{\mathrm{U}}'(x) > 0 \text{ sur }]\alpha; -\sqrt{v}[.$
- o Sur $\left[-\sqrt{v}; \sqrt{v}\right]$, la fonction $g_{u'}$ est strictement décroissante et on a $g_{u'}\left(-\sqrt{v}\right) > 0$ et $g_{u'}(\sqrt{v}) \ge 0$. La fonction $g_{u'}$ prend donc des valeurs positives sur cet intervalle;
- Sur $\lceil \sqrt{v}; +\infty \rceil$, la fonction g_{U}' est strictement croissante et on a $g_{U}'(\sqrt{v}) \ge 0$. La fonction g_{U} prend donc des valeurs positives sur cet intervalle.

En définitive :

- Pour tout x de $]-\infty;\alpha[,g_{II}(x)<0]$;
- Pour tout x de $[\alpha; +\infty[, g_{U}'(x)] \ge 0$ (la fonction g_{U}' s'annulant en α et, éventuellement, en \sqrt{v}).

On a alors le tableau suivant :

х	- ∞	α	$-\sqrt{v}$		\sqrt{v}	+∞
g_{U} " (x)		+	0	_	0	+
$g_{\mathrm{U}}^{'}$	_ 8	0	$\Rightarrow g_{U}'(-\sqrt{v})$	1	$g_{\text{U}}'(\sqrt{v})$	+ 8
$g_{\rm U}'(x)$	_	0	+		+	
$g_{\scriptscriptstyle m U}$	+ 8	$g_{_{\mathrm{U}}}(lpha)$				→ +∞
$f_{ m U}$	+ 8	$f_{ ext{ iny U}}(lpha)$				→ +∞

Si
$$g_{\mathrm{U}}'(\sqrt{v}) < 0 < g_{\mathrm{U}}'(-\sqrt{v})$$

o Sur $\left]-\infty;-\sqrt{v}\right]$ la fonction $g_{_{\mathrm{U}}}$ ' est strictement croissante et on a : $\lim_{x \to \infty} g_{u'}(x) = -\infty \text{ et } g_{u'}(-\sqrt{v}) > 0.$

Le théorème des valeurs intermédiaires nous permet ici de conclure qu'il existe un unique réel α dans $\left]-\infty;-\sqrt{v}\right[$ tel que $g_{_{\mathrm{U}}}'(\alpha)=0$.

De la croissance de $g_{\rm U}$, on tire :

- $g_{\text{U}}'(x) < 0 \text{ sur }]-\infty; \alpha[$; $g_{\text{U}}'(\alpha) = 0$; $g_{\text{U}}'(x) > 0 \text{ sur }]\alpha; -\sqrt{\nu}[$.
- o Sur $\left[-\sqrt{v}; \sqrt{v}\right]$, la fonction $g_{u'}$ est strictement décroissante et on a $g_{u'}(-\sqrt{v}) > 0$ et $g_{\rm U}'(\sqrt{v}) < 0$.

Le théorème des valeurs intermédiaires nous permet de conclure qu'il existe un unique réel β dans $\left] -\sqrt{v}; \sqrt{v} \right[$ tel que $g_{\text{U}}'(\beta) = 0$.

De la décroissance de $\,g_{_{\rm U}}'$, on tire alors :

- $g_{\mathrm{U}}'(x) > 0 \text{ sur } \left] \sqrt{v}; \beta \right[;$ $g_{\mathrm{U}}'(\beta) = 0 ;$
- $g_{U}(x) < 0 \text{ sur } \beta; \sqrt{v}$.