Chapitre 1 - Les outils

I. Outils mathématiques

1. Présentation des résultats numériques

a. Les chiffres significatifs

Pour expliquer ce que sont les chiffres significatifs, prenons l'exemple simple de la division de 1 par 3300. Lorsque la calculatrice est en mode « normal », abréviation « NORM » dans le menu (et nous invitons le lecteur à lire, si ce n'est déjà fait, la notice de sa calculatrice certainement neuve), elle affiche :



- Les zéros à gauche du premier chiffre non nul ne sont pas des chiffres significatifs;
- Le premier chiffre non nul et tous les chiffres à sa droite, même les zéros, sont significatifs;
- Présenter un résultat avec trois chiffres significatifs, c'est donner les trois premiers chiffres significatifs en arrondissant le troisième au plus proche.

Par exemple ici : $1/3300 = 3,03.10^{-4}$

ou $1/3300 = 30,3.10^{-5}$

ou encore $1/3300 = 303.10^{-6}$

b. Le mode « SCI » de la calculatrice

En mode « scientifique » (SCI) le premier chiffre présenté est le premier chiffre significatif.

Pour présenter le résultat, il n'y a donc plus qu'à arrondir au plus proche le dernier chiffre significatif demandé, sans oublier l'exposant.

Par exemple à trois chiffres significatifs : $1/3300 = 3,03.10^{-4}$

Ou à quatre chiffres significatifs : $1/3300 = 3,030.10^{-4}$

c. Le mode « ENG » de la calculatrice

En mode « engineer » (ENG) le premier chiffre présenté est le premier chiffre significatif.

1 / 3 3 0 0
3 0 3 . 0 3 0 3 0 3
$$^{-0.6}_{x \cdot 10}$$

La virgule est placée de sorte à ce que l'exposant corresponde à un préfixe du système international d'unités (SI) (voir ci-dessous).

d. Utilisation des préfixes SI

Pour donner un résultat on préférera encore utiliser un préfixe SI (tableau 1) plutôt qu'une puissance de dix.

Facteur	Préfixe	Symbole	Facteur	Préfixe	Symbole
10^{24}	yotta	Y	10-1	déci	d
10^{21}	zetta	Z	10-2	centi	c
10 ¹⁸	exa	Е	10-3	milli	m
1015	peta	P	10-6	micro	μ
10^{12}	téra	T	10-9	nano	n
10^{9}	giga	G	10-12	pico	p
10^{6}	méga	M	10-15	femto	f
10^{3}	kilo	k	10-18	atto	a
10^{2}	hecto	h	10-21	zepto	Z
10 ¹	déca	da	10-24	yocto	y

Tableau 1 : préfixes du système international d'unités.

Par exemple, si le calcul d'une longueur ℓ donne 303,030303.10⁻⁶ mètres, on notera, avec trois chiffres significatifs, le résultat ℓ = 303 µm qui se lit « 303 micromètres ». On comprend ici l'avantage du mode « ENG » de la calculatrice.

2. La dérivée

a. Coefficient directeur d'une droite

Soit un plan pourvu d'un repère constitué des axes (Ox) et (Oy). Soit une droite de ce plan définie par deux points A et B, de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$ (voir figure 1). Le coefficient directeur de cette droite est alors défini comme un scalaire, que nous allons noter « a », et tel que :

$$a = \frac{y_B - y_A}{x_B - x_A}$$

Sous la forme $y_B - y_A = a(x_B - x_A)$ on remarque facilement que si $x_B - x_A = 1$ alors $y_B - y_A = a$.

Le coefficient directeur correspond à la valeur dont varie y lorsque x augmente d'une unité.

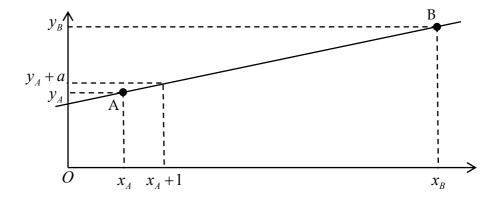


Figure 1 : le coefficient directeur d'une droite est la valeur « a » qui correspond à la variation de y lorsque x augmente d'une unité. « a » est négatif si la droite est décroissante.

b. La fonction dérivée d'une fonction f(x)

Soient A et B deux points de la représentation graphique d'une fonction f(x) représentée en gris sur la figure 2. Les abscisses de ces deux points sont alors respectivement $f(x_A)$ et $f(x_B)$. En déplaçant le point B le long de la représentation graphique dans la direction de A jusqu'au point B' (figure 2), on visualise que si B se rapproche infiniment près de A, la droite (AB) sera confondue avec la tangente à la représentation graphique au point A (figure 3).

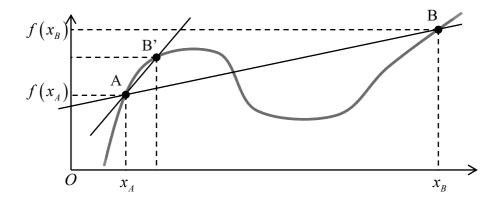


Figure 2 : sur ce schéma sont représentées les droites passant par A et par des points plus ou moins proches de A.

Le coefficient directeur de la tangente en A à la représentation graphique de la fonction f(x), que nous continuons pour l'instant de noter « a », est alors défini par la limite, lorsque B tend vers A, du rapport de la différence des abscisses par la différence des ordonnées :

$$a = \lim_{B \to A} \frac{f(x_B) - f(x_A)}{x_B - x_A}$$

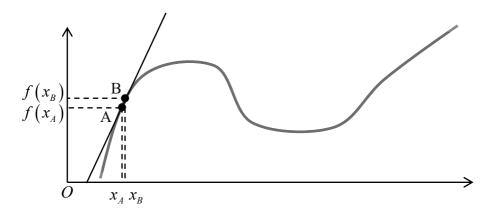


Figure 3 : lorsque le point B est infiniment proche du point A, la droite passant par les deux points est la tangente à la courbe.

Comme B tend vers A, la différence $(x_B - x_A)$ devient une valeur infinitésimale (aussi proche de zéro que nous pouvons l'imaginer... sans jamais être nul) notée dx. Nous pouvons écrire :

$$a = \frac{f(x_A + dx) - f(x_A)}{(x_A + dx) - x_A}$$

Comme dx est infinitésimal $f(x_A + dx)$ ne peut être différent de $f(x_A)$ que d'une valeur infinitésimale que nous notons $df(x_A)$.

Nous obtenons:

$$a = \frac{\left(f(\mathbf{x}_{A}) + df(\mathbf{x}_{A})\right) - f(\mathbf{x}_{A})}{dx} = \frac{df(\mathbf{x}_{A})}{dx}$$

Nous insistons auprès du lecteur sur le fait que la notation $\frac{df(x_A)}{dx}$ est donc la division de la valeur numérique $df(x_A)$ par la valeur numérique dx. Trop d'étudiants voient cette notation comme un symbole mathématique abstrait voulant juste dire « dérivée de la fonction » en oubliant qu'il s'agit d'une division.

Il n'y aura donc rien d'étonnant à écrire :

$$a = \frac{df(x_A)}{dx} \iff df(x_A) = a.dx$$

S'il est possible de calculer pour chaque valeur de x la valeur de x a x, il est alors possible de définir la fonction f'(x) appelée x dérivée de la fonction f(x) x, telle que pour toutes valeurs de x, f'(x) soit la valeur du coefficient directeur de la tangente à la représentation graphique de la fonction f(x) au point d'abscisse x.

Nous avons alors au point d'abscisse x_A :

$$f'(x_A) = \frac{df(x_A)}{dx} = a$$

Et nous pouvons écrire pour toutes valeurs de x:

$$f'(x) = \frac{df(x)}{dx} \iff df(x) = f'(x).dx$$

Rappelons sans démonstration quelques fonctions dérivées usuelles (tableau 2) :

fonctions	fonctions dérivées		
а	0		
ax + b	а		
$ax^n + b$	$a.n.x^{n-1}$		
$\cos(x)$	$-\sin(x)$		
sin(x)	$\cos(x)$		
tan(x)	$\frac{1}{\cos^2(x)}$		
ln(x)	$\frac{1}{x}$		
e^x	e^x		
a.f(x)	a.f'(x)		
f(x)+g(x)	f'(x)+g'(x)		
f(x).g(x)	f'(x).g(x)+f(x).g'(x)		
f(x)	f'(x).g(x)-f(x).g'(x)		
g(x)	$g^2(x)$		
$a.f^{n}(x)+b$	$a.n.f^{n-1}(x).f'(x)$		
f(g(x))	f'(g(x)).g'(x)		

Tableau 2 : quelques fonctions et leurs dérivées.

3. Le développement limité d'ordre 1

Le développement limité d'ordre 1 permet de donner une expression approchée d'une fonction, le but étant généralement d'obtenir une expression plus simple.

Appuyons-nous sur la représentation graphique d'une fonction pour imager la méthode (figure 4).

Soit des points A et B de la représentation graphique d'une fonction f(x) de coordonnées respectives $(x_A; f(x_A))$ et $(x_B; f(x_B))$. Soit la tangente à la courbe au point A et le point C sur cette tangente ayant la même abscisse que le point B (voir figure 4). $f'(x_A)$ étant le coefficient directeur de la tangente, nous obtenons comme ordonnée du point C la valeur $f(x_A) + f'(x_A) \times (x_B - x_A)$.

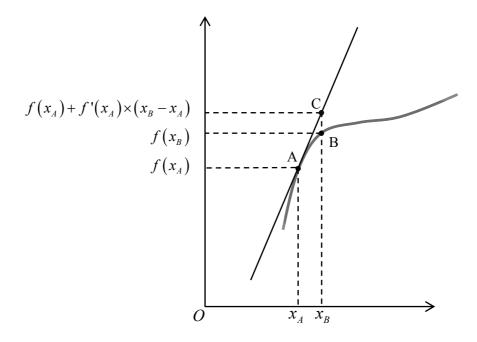


Figure 4: représentation graphique de la fonction f(x) sur laquelle on peut voir que si la valeur $(x_B - x_A)$ est très petite on pourra confondre les ordonnées des points B et C et écrire $f(x_B) \sim f(x_C)$.

Si maintenant la différence $(x_B - x_A)$ tend vers une valeur très petite, les points B et C s'approchent l'un de l'autre (en s'approchant du point A) et leurs ordonnées tendent également l'une vers l'autre jusqu'à être quasi égales. Nous pouvons alors écrire $f(x_B) \approx f(x_A) + f'(x_A) \times (x_B - x_A)$.

En notant ε la très petite valeur $(x_B - x_A)$ et en faisant cette démarche quelle que soit l'abscisse x d'un point de la courbe nous obtenons l'expression plus générale :

$$f(x+\varepsilon) \approx f(x) + f'(x) \times \varepsilon$$

Expression du développement limité d'ordre 1 de la fonction f(x) lorsque $\varepsilon \ll 1$

4. L'intégrale

a. Aire sous une courbe

Considérons la représentation graphique d'une fonction f(x) sur la figure 5. Pour calculer l'aire sous la courbe comprise entre les points A et B, nous allons approximer cette aire à la somme des aires des rectangles représentés remplis de motifs.

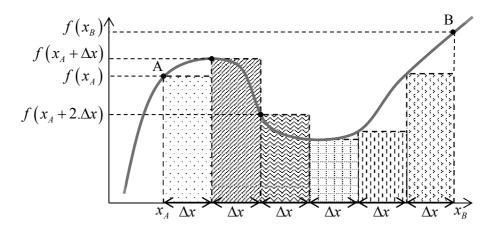


Figure 5 : approximation de l'aire sous la courbe entre les points A et B à la somme des aires de six rectangles.

Le premier rectangle, celui le plus à gauche sur la figure 5 et rempli par le motif $[x_A]$, à une hauteur égale à $f(x_A)$ et une largeur égale à $\Delta x = \frac{x_B - x_A}{n}$ avec ici la représentation particulière de n = 6. L'aire de ce premier rectangle est donc égale au produit de la hauteur par la largeur : $f(x_A) \times \Delta x$.

Le deuxième rectangle, dont le motif est $f(x_A + \Delta x)$ et une largeur égale à $\Delta x = \frac{x_B - x_A}{k}$. Cela donne une aire dont l'expression est : $f(x_A + \Delta x) \times \Delta x$.

De proche en proche nous obtenons l'expression de l'aire du $k^{i \text{ème}}$ rectangle : $f(x_A + (k-1)\Delta x) \times \Delta x$.

Si nous approximons l'aire sous la courbe, notée A, à la somme des aires des rectangles, alors :

$$A \approx \underbrace{f\left(x_{A}\right).\Delta x}_{\text{surface du premier rectangle, de hauteur }} + \underbrace{f\left(x_{A} + \Delta x\right).\Delta x}_{\text{surface du deuxième rectangle, de hauteur }} + f\left(x_{A} + 2\Delta x\right).\Delta x + \dots$$

$$\approx \sum_{k=0}^{n-1} f\left(x_{A} + k\Delta x\right).\Delta x$$

$$\approx \sum_{k=0}^{n-1} f\left(x_{A} + k\Delta x\right).\Delta x$$

Nous remarquons que par rapport à l'aire sous la courbe nous comptons parfois trop de surface (c'est le cas pour les 2^{ème} et 3^{ème} rectangles), et parfois pas assez (1^{er}, 4^{ème}, 5^{ème} et 6^{ème} rectangles). Par contre, ce que nous comptons en plus n'est pas égal à ce que nous obtenons en moins !