I. LE MONDE DE L'AUTOMOBILE	7	4-3 Amortissement des structures	115
1 Préambule	8	4-4 Transparence acoustique	116
2 La production mondiale	8	5 Les modes d'organes	117
3 Les constructeurs	10	5-1 L'habitacle	117
4 Alliances, fusions, partenariat	18	5-2 Cas d'un berceau cadre	118
5 Classification des modèles	22	5-3 Support de direction	119
6 Quelques caractéristiques	25	5-4 Quid des occupants	120
7 Diversité commerciale	28	5-5 Combinaison des modes	120
8 Quid du futur ?	30	5-6 Stratégie de résolution	121
II. TENDANCES	31	VI. SÉCURITÉ	123
1 Préambule.	32	1 Données générales	124
2 Le pouvoir des consommateurs	33	1-1 Les chiffres	124
3 Le pouvoir des fournisseurs	37	1-2 La sécurité active	126
4 Les nouveaux arrivants 4-1 La Chine	43 44	1-3 La sécurité passive 1-4 La sécurité tertiaire	127
4-1 La Chine 4-2 L'Inde	44	2 Tenue de la structure	127 129
5 Les produits de substitution	46 49	3 Les moyens de retenues	133
5-1 Les nouveaux matériaux	49	4 Chocs arrière	138
5-2 Les véhicules hybrides	49	5 Chocs latéraux	139
5-3 Les véhicules électriques	51	6 Compatibilité	142
5-4 Les agro-carburants	52	7 Choc piéton	147
5-5 Pile à combustible	55	7-1 La règlementation	147
5-6 Le véhicule à air comprimé	56	7-2 Capot actif	149
5-7 Comparaison des solutions	59	8 Conception des structures	150
5-8 Nouveaux concepts	61	8-1 Description des éléments	151
6 Les réponses	64	8-2 Recommandations de dessin	152
1		8-3 Contraintes d'architecture	153
III. LE MÉTIER D'ARCHITECTE	67		
1 Définition	68	VII. DESIGN	155
2 Les contraintes	69	1 Préambule	156
3 Gestion des volumes	73	2 Comment lire un design	158
4 Le plan de référence	74	3 Monocorps et bicorps	160
5 Les outils	75	4 Prise en compte de l'ergonomie	164
6 Historique des architectures Renault	76	5 Prise en compte de la réglementation	166
7 Tendances architecturales.	78	6 Incidence des portes latérales	167
8 Fonctions techniques	81	7 Design intérieur	168
9 Exemples d'architectures	82	8 Compléments	170
9-1 Véhicule tout terrain	82	THE EDGONOLOG	171
9-2 Renault 5 Turbo	83	VIII. ERGONOMIE	171
9-3 Quadricycle 16/18	86	1 Domaine couvert	172
		2 Données anthropométriques 2-1 Les standards	173 173
IV. REGLEMENTATION	89	2-1 Les standards 2-2 Diversités morphologiques	175
1 Le champ de la règlementation	90	3 Positionnement des occupants	175
2 Les acteurs.	95	4 Emplacement des commandes	179
2-1 La Commission Européenne	95	4-1 Positionnement du volant	179
2-2 EuroNCAP	95	4-2 Positionnement des pédales	181
2-3 EEVC	95	4-3 Atteinte des commandes	182
2-4 CARS21	96	5 Habitabilité transversale	183
2-5 Internet	96	6 Habitabilité longitudinale	185
3 Sécurité générale des produits	96	7 La vision	186
4 Evolutions à terme.	98	7-1 L'environnement extérieur	186
		7-2 Vision instrumentation	187
V. ACOUSTIQUE ET VIBRATIONS	101	7-3 Affichage tète haute	188
1 Préambule	102	8 Communication homme machine	188
2 Les sources vibratoires	104	8-1 Compréhension des affichages	189
3 Les bruits émis vers l'extérieur	107	8-1-1 Quelques règles simples	190
4 Les bruits intérieurs	110	8-2 Analyse du système	190
4-1 Raideur dynamique	110	9 Les seniors	192
4-2 Filtrations	114	10 Quelques données	195

W. COMPORT THERE WAY	107	(N	201
IX. CONFORT THERMIQUE	197	6 Plug-in	301
1 Les besoins	198	7 Stop & Start	302
2 Les effets thermiques	199	8 Conclusion	303
3 Mannequin calorimétrique	200	YANA INDUCEDIA LICATION	205
3-1 température équivalente	200	XIV. INDUSTRIALISATION	305
3-2 Mannequins thermiques	203	1 Graphe de fabrication carrosserie	306
4 Système de climatisation	204	1-1 Véhicule grande série	306
4-1 Sources chaudes	205	1-2 Particularité petite série	309
4-2 Sources froides	207	2 Graphe de montage mécanique	311
4-3 Ventilation	208	2-1 Exemple poste de conduite	312
4-4 Réglage puissance chauffage	210	2-2 Montage automatique	313
4-5 Distribution de l'air	211	2-3 Suite du montage	315
4-5-1 Répartition	212	2-4 Equilibrage des postes	315
4-5-2 Distribution	214	3 Ergonomie des postes de travail	316
4-5-3 Diffusion	214	4 Conséquences sur la conception	318
5 Qualité de l'air habitacle	215	5 Alternatives	319
6 Véhicules électriques	217	VI CECTION DE DOCIET	221
6-1 Chauffage	217	XV. GESTION DE PROJET	321
6-2 Air conditionné	218	1 Notion de Projet	322
6-3 Spécificités véhicules électriques	218	2 Les prestations	322
W. L.E. COMPORT DANA MOUE	210	3 La planification	324
X. LE CONFORT DYNAMIQUE	219	3-1 Planning général	324
1 Préambule	220	3-2 Exploratoire & Préparatoire	325
2 Dimensionnement des roues	221	4 L'organisation par projets	327
3 Répartition des masses	223	4-1 Structure matricielle	327
4 Débattement de suspension	224	4-2 Constitution d'une Equipe Projet	329
5 L'amortisseur	229	5 La qualité	331
6 Axe de roulis	231	5-1 Les validations	331
7 Type de trains avant	233	5-2 La gestion des risques	332
7-1 Train McPherson	233	5-3 Les innovations	333
7-2 Double triangle	233	6 Evaluation des projets d'investissement	334
7-3 Comparaison McPh. double trgl	234	7 Les revues de Projet	336
8 Positionnement de la crémaillère	236	8 Les indicateurs Projets	337
8-1 Positionnement en Z	237		
8-2 Positionnement en X	238	XVI. L'ECONOMIE DU VEHICULE	339
9 Réduction des transferts route volant	239	1 Préambule	340
10 Familles de train arrière	241	2 Prix de revient de fabrication	340
11 Anti-plongée	249	3 Structure de coût d'un véhicule	342
		4 Prévision des coûts	346
XI. PERFORMANCES	251		
1 Formules	252	XVII. BASE DE DONNEES	351
2 Limites à l'accélération	257	1 Préambule	352
		II Tendance. Développement durable	353
XII. CONSOMMATION	259	III.1 Archi. Encombrement GMP	355
1 Préambule	260	III.2 Archi. Circuit refroidissement	355
2 Contrôle des émissions	262	III.3 Archi. Circuit carburant	358
3 Tendances réglementaires	263	III.4 Archi. Processus innovation	359
4 Les pistes de réduction	265	IV Réglementation	360
5 Consommation des moteurs thermiques	266	VII Design: Dessiner	361
6 Adaptation des boîtes de vitesses	272	VIII Ergonomie	363
7 Les hybrides	275	X.1 Conf. dyn. Disque de frein	363
8 Résistance aérodynamique	276	X.2 Conf. dyn. Pneumatiques	364
9 Les allègements	280	X.3 Conf. dyn. trains avant & arrière	365
10 Consommateurs électriques	284	XI Perfo. Couples unitaires moteurs	366
11 Conséquences	285	XII.1 Conso. pistes de réduction	368
		XII.2 Conso. Masses	368
XIII. HYBRIDATION	287	XII.3 Conso. Cycle NEDC	371
1 Classifications	288	XV.1 GdP. Qualité : Quelques outils	371
2 Approche systémique	290	XV.2 GdP. Connaissance des caractères	375
3 Production énergie électrique	291	XVI Economie : Flux	377
4 Récupérer de l'énergie au freinage	295	Abréviations & acronymes	378
5 Stockage de l'énergie	297	INDEX	380