1 Récurrence et suites

MÉMO

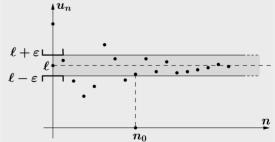
1 Raisonnement par récurrence

Soit $\mathcal{P}(n)$ une propriété dépendant d'un entier naturel n et n_0 un entier naturel fixé. Pour montrer que $\mathcal{P}(n)$ est vraie pour tout entier $n \ge n_0$, on procède en trois temps :

- Initialisation On montre que $\mathcal{P}(n_0)$ est vraie.
- **Hérédité** Pour tout entier $n \ge n_0$, on montre que $\mathcal{P}(n)$ implique $\mathcal{P}(n+1)$.
- Conclusion Pour tout $n \ge n_0$, la propriété $\mathcal{P}(n)$ est vraie.
- 2 Une suite $(u_n)_{n\in\mathbb{N}}$, aussi notée (u_n) ou u, peut notamment être définie par
 - une formule explicite donnant u_n en fonction de n (exemple : $\forall n \in \mathbb{N}, u_n = n^2$);
 - une relation de récurrence en donnant le premier terme u_0 et une expression de u_{n+1} en fonction de u_n (exemple, $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = 3u_n 5$).
- 3 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et n_0 un entier naturel. On dit que la suite u est
 - croissante à partir de n_0 lorsque : $\forall n \ge n_0, u_{n+1} \ge u_n$;
 - décroissante à partir de n_0 lorsque : $\forall n \ge n_0, u_{n+1} \le u_n$;
 - monotone lorsqu'elle est croissante ou décroissante ;
 - constante à partir de n_0 lorsque : $\forall n \ge n_0, \ u_{n+1} = u_n$;
 - majorée lorsqu'il existe un réel M tel que pour tout $n \in \mathbb{N}$, $u_n \leq M$;
 - minorée lorsqu'il existe un réel m tel que pour tout $n \in \mathbb{N}$, $u_n \geqslant m$;
 - bornée lorsqu'elle est à la fois majorée et minorée.
- 4 On dit qu'une suite (u_n) est **convergente** vers $\ell \in \mathbf{R}$ lorsque :

pour tout réel $\varepsilon > 0$ (aussi petit que l'on veut), il existe un rang n_0 à partir duquel tous les termes u_n sont dans l'intervalle ouvert $]\ell - \varepsilon$; $\ell + \varepsilon[$. Dans ce cas, ℓ est unique et est appelée **la limite** de (u_n) .

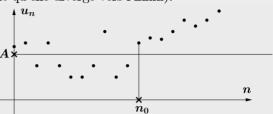
On note
$$\lim_{n\to+\infty}u_n=\ell$$
.



Une suite (u_n) non convergente est dite **divergente** et deux cas peuvent se présenter :

- (u_n) n'admet pas de limite;
- (u_n) admet une **limite infinie** (on dit qu'elle diverge vers l'infini).

Par exemple, (u_n) a pour limite $+\infty$ si, pour tout réel A (aussi grand que l'on veut), il existe un rang n_0 à partir duquel tous les termes u_n sont supérieurs à A.



5 Opérations sur les limites (F.I. désigne une forme indéterminée)

• Somme $(u_n + v_n)$

$\lim_{n \to +\infty} u_n$	ℓ	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$
$\lim_{n \to +\infty} v_n$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{n \to +\infty} (u_n + v_n)$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	F.I.	$-\infty$

• Produit $(u_n v_n)$

$\lim_{n \to +\infty} u_n$	ℓ	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	$\pm \infty$	$\pm \infty$
$\lim_{n \to +\infty} v_n$	ℓ'	$+\infty$	$-\infty$	+∞	$-\infty$	$\pm\infty$	0
$\lim_{n \to +\infty} (u_n v_n)$	$\ell\ell'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$\pm \infty$	F.I.

ullet Quotient $\left(rac{u_n}{v_n} ight)$

$\lim_{n \to +\infty} u_n$	ℓ	ℓ	$\ell \neq 0$	$\pm \infty$	$\pm \infty$	$\pm \infty$	0
$\lim_{n \to +\infty} v_n$	$\ell' \neq 0$	$\pm \infty$	0	$\ell' \neq 0$	$\pm \infty$	0	0
$\lim_{n \to +\infty} \left(\frac{u_n}{v_n} \right)$	$\frac{\ell}{\ell'}$	0	$\pm \infty$	$\pm \infty$	F.I.	$\pm \infty$	F.I.

6 Comparaison et limites

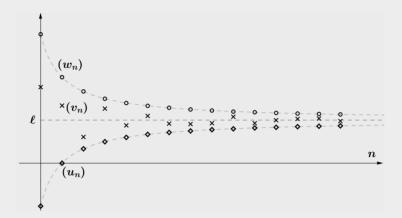
ROC • Soient (u_n) et (v_n) deux suites telles que $v_n \ge u_n$ à partir d'un certain rang.

- 1. Si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.
- 2. Si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

• Théorème dit « des gendarmes »

Soit (u_n) , (v_n) et (w_n) trois suites réelles.

Si
$$\begin{cases} u_n \leqslant v_n \leqslant w_n \text{ à partir d'un certain rang} \\ (u_n) \text{ et } (w_n) \text{ convergent et ont toutes les deux la même limite } \ell \\ \text{alors } (v_n) \text{ est convergente et on a : } \lim_{n \to +\infty} v_n = \ell. \end{cases}$$



7 Suites monotones et limites

ROC • Soit (u_n) une suite croissante.

Si $\lim_{n \to +\infty} u_n = \ell$ alors pour tout $n \in \mathbb{N}$, $u_n \leqslant \ell$.

ROC • Si une suite est **croissante et non majorée**, alors elle a pour limite $+\infty$.

Si une suite est **décroissante et non minorée**, alors elle a pour limite $-\infty$.

• Si une suite est **croissante et majorée**, alors elle converge.

Si une suite est décroissante et minorée, alors elle converge.

8 Limites usuelles

- $\lim_{n \to +\infty} \sqrt{n} = +\infty$ et : $\forall p \in \mathbf{N}^*$, $\lim_{n \to +\infty} n^p = +\infty$.
- $\bullet \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \text{ et} : \forall p \in \mathbf{N}^*, \ \lim_{n \to +\infty} \frac{1}{n^p} = 0.$
- Si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$.
- ROC Soit $x \in]0$; $+\infty[$. Pour tout $n \in \mathbb{N}$, $(1+x)^n \geqslant 1+nx$. (Inégalité de Bernoulli) On en déduit que si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$.

12 Chapitre 1

A Quelques réflexes d'ordre général

Pour montrer que	on peut par exemple				
	• étudier le signe de $u_{n+1} - u_n$				
une suite (u_n) est monotone	• comparer $\frac{u_{n+1}}{u_n}$ à 1 (si (u_n) est > 0 ou < 0)				
	• utiliser une récurrence				
	• étudier la fonction f (cas $u_n = f(n)$)				
	• montrer qu'elle est croissante majorée				
	• montrer qu'elle est décroissante minorée				
une suite (u_n) converge	• utiliser le théorème « des gendarmes »				
	• déterminer la limite par calcul direct (cas $u_n = f(n)$)				
	• utiliser les résultats sur les suites géométriques				
	utiliser une comparaison				
une suite (u_n) diverge	• déterminer la limite par calcul direct (cas $u_n = f(n)$)				
	• utiliser les résultats sur les suites géométriques				
une suite (u_n) est arithmétique	• montrer que $u_{n+1} - u_n = r$ (r constante)				
une suite (u_n) est géométrique	• montrer que $u_{n+1} = q u_n \ (q \text{ constante})$				

B Suites arithmétique et géométrique

	${f Arithm\'etique}$	Géométrique
Relation de récurrence	$\begin{cases} u_0 = \dots \\ u_{n+1} = u_n + r \end{cases}$	$\begin{cases} v_0 = \dots \\ v_{n+1} = q v_n \end{cases}$
Formule explicite	$u_n = u_p + (n - p)r$ (si $p = 0$, $u_n = u_0 + nr$)	$v_n = v_p q^{n-p}$ (si $p = 0$, $v_n = v_0 q^n$)
Somme de n termes consécutifs	$n \times \frac{\text{premier terme}}{1} + \frac{\text{dernier terme}}{2}$	$ \text{premier terme} \times \frac{1 - q^n}{1 - q} $

C Comment lever une forme indéterminée?

On peut distinguer quatre formes indéterminées : « $\frac{\infty}{\infty}$ », « $\frac{0}{0}$ », « $\infty - \infty$ » et « $\infty \times 0$ ».

Pour lever une forme indéterminée, on peut...

- mettre en facteur le terme prépondérant
- (► €x. 7:1,3,4,5)

 développer et réduire l'expression
- utiliser l'expression conjuguée (avec $\sqrt{}$) (\blacktriangleright Ex. 7:6)

D Deux algorithmes incontournables

Exemples avec la suite (u_n) définie par $\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{u_n + 6} \end{cases}$.

▶ Algorithme de calcul d'un terme.

Variables	i et n sont des entiers naturels]	
	u est un réel		
Entrée	Saisir n	←	$\mid n$ est le rang du terme cherché
Initialisation	Affecter à u la valeur 2	←	on initialise u à $u_0=2$
Traitement	Pour i variant de 1 à n		\mid à partir de u_0 , la relation de récur-
	Affecter à u la valeur $\sqrt{u+6}$	\leftarrow	rence permet de calculer u_1 , puis
	Fin de Pour		$u_2 \dots jusqu'à u_n$
Sortie	Afficher u	\leftarrow	valeur u_n cherchée

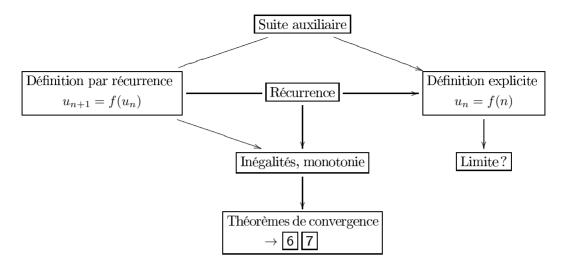
▶ Algorithme de seuil : déterminer le plus petit entier n tel que $u_n > 2,99$.

Variables	n est un entier naturel		
	u est un réel		
Initialisation	Affecter à u la valeur 2	←	on initialise u à u_0 et n au rang
	Affecter à n la valeur 0		correspondant, c'est-à-dire 0.
Traitement	Tant que $u \leq 2,99$		tant que la condition contraire de
	Affecter à u la valeur $\sqrt{u+6}$,	celle cherchée est vraie, on recom-
	Affecter à n la valeur $n+1$		mence le calcul du terme suivant
	Fin de Tant que		et augmente donc le rang de 1
Sortie	Afficher n	←	on obtient le rang cherché

Important - L'algorithme précédent renvoie bien un nombre. En effet, on peut montrer que $\lim_{n\to+\infty}u_n=3$, ce qui assure l'existence d'un terme u_{n_0} tel que $u_{n_0}>2,99$.

14 Chapitre 1

E Quelques repères pour étudier une suite



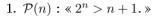
Mettre en pratique

Exercice 1

Rang d'une propriété

Solution p. 30

Dans cet exercice, n désigne un entier naturel. Écrire les propriétés $\mathcal{P}(n)$ suivantes au rang 0 puis au rang n+1.



2.
$$\mathcal{P}(n)$$
: « $u_n = 80 - 20 \times \left(\frac{2}{5}\right)^n$. »

3. $\mathcal{P}(n)$: « Le triangle OA_nA_{n+1} est rectangle en A_n . »

4.
$$\mathcal{P}(n)$$
 : « $0 \le u_n \le u_{n+1} \le 2$. »

5. $\mathcal{P}(n)$: « $u_n > n$. »

Cet exercice est un travail préparatoire important avant d'aborder le raisonnement par récurrence.

Méthode 1

Raisonner par récurrence

Montrons par exemple que pour tout entier $n\geqslant 2$, $2^n>n+1$.

▶ On commence tout d'abord par énoncer clairement ce que l'on veut démontrer :

Démontrons par récurrence que la propriété

$$\mathcal{P}(n): \ll 2^n > n+1 \gg$$

est vraie pour tout entier $n \geqslant 2$.

▶ Initialisation – Cette étape est fondamentale ; il s'agit de mettre en évidence le rang à partir duquel la propriété est vraie. D'après l'énoncé, il s'agit du rang n=2.

 $\parallel 2^2=4$ et 2+1=3 ; on a donc bien $2^2>2+1$ ce qui signifie que $\mathcal{P}(2)$ est vraie.

▶ Hérédité − L'hérédité consiste à montrer que si l'on suppose $\mathcal{P}(n)$ vraie pour un certain entier n (ici supérieur ou égal à 2), alors $\mathcal{P}(n+1)$ est également vraie.

Soit $n \geqslant 2$. Supposons $\mathcal{P}(n)$ vraie, c'est à dire $2^n > n+1$. En multipliant chaque membre par l'entier positif 2, il s'ensuit $2^{n+1} > 2n+2$.

Or, pour tout n > 0, 2n + 2 > n + 2 donc $2^{n+1} > n + 2$ (c'est à dire $\mathcal{P}(n+1)$).

Nous avons ainsi montré que pour tout entier $n \ge 2$, $\mathcal{P}(n)$ vraie implique $\mathcal{P}(n+1)$ vraie.

► Conclusion – La propriété est initialisée en 2 et est héréditaire donc :

Pour tout entier nature $n \ge 2$, $2^n > n+1$.

▶ Ex. 2 et 3

Exercice 2

Récurrence et définition explicite

Solution p. 30

1. Soit
$$(u_n)$$
 définie par
$$\begin{cases} u_0 = 8 \\ \forall n \in \mathbf{N}, \ u_{n+1} = 0, 5u_n + 2 \end{cases}$$

Montrer que : $\forall n \in \mathbb{N}, u_n = 4 \times 0, 5^n + 4$.

2. Soit
$$(v_n)$$
 définie par
$$\begin{cases} v_0 = \frac{3}{2} \\ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{-2}{v_n - 3} \end{cases}$$
 Montrer que : $\forall n \in \mathbb{N}, \ v_n = \frac{2^n + 2}{2^n + 1}$.

Exercice 3

Récurrence et inégalité

Solution p. 31

1. Soit (u_n) définie par $\begin{cases} u_0 = -2 \\ \forall n \in \mathbf{N}, \ u_{n+1} = u_n + u_n^2 \end{cases}$

Montrer que : $\forall n \in \mathbf{N}^*, u_n > n$.

2. Soit (u_n) définie par $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n + 5} \end{cases}$

Montrer que : $\forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant u_{n+1} \leqslant 3$.

3. Soit (u_n) définie par $\begin{cases} u_1 = 0, 6 \\ \forall n \in \mathbf{N}^*, \ u_{n+1} = \frac{1}{2 - u_n} \end{cases}$

Montrer que : $\forall n \in \mathbf{N}^*, 1 - \frac{1}{n} \leqslant u_n \leqslant 1$.

4. Soit f une fonction croissante définie sur \mathbf{R} et (u_n) une suite définie par $u_0 \in \mathbf{R}$ et pour tout entier naturel $n, u_{n+1} = f(u_n)$. Démontrer que si $u_1 \leq u_0$, alors (u_n) est décroissante.

Exercice 4

Interprétation d'inégalités

Solution p. 33

On donne ci-dessous des inégalités valables à partir d'un certain entier naturel n_0 . Pour chacune d'entre elles, donner la ou les conclusion(s) que l'on peut en déduire, notamment quant à la limite éven-

