Table des matières

I Signaux temporels 10
1 Introduction 11
1.1 Définition d'un signal 11
1.2 Classification des signaux 11
1.2.1 Signaux continus et discrets 11
1.2.2 Signaux déterministes et aléatoires 12
1.3 Conclusions et extensions 15
2 Signaux déterministes à temps continu 16
2.1 Représentation temporelle 16
2.2 Transformations et représentation fréquentielle (rappels) 17
2.2.1 Représentation d'un signal périodique par une série de Fourier 17
2.2.2 Transformation de Fourier 19
2.2.3 Transformation de Laplace 22
2.2.4 Lien entre transformées de Fourier et Laplace 22
2.3 Filtrage (rappels) 22
2.3.1 Définitions 22
2.3.2 Propriétés des filtres 23
2.4 Energie, puissance, corrélation 26
2.4.1 Energie et puissance en représentation temporelle 27
2.4.2 Propriétés des signaux à énergie finie 28
2.4.3 Propriétés des signaux à puissance moyenne finie 38
2.5 Conclusions et extensions 41
2.6 Annexe A : grandeurs liées à l'énergie et la puissance 41
2.7 Annexe B : signe du coefficient de corrélation 42
3 Probabilités 43
3.1 Définitions 43
3.2 Opérations sur les événements 44
3.3 Tribu 44
3.4 Espaces probabilisables et probabilisés 46
3.5 Approche fréquentiste de la probabilité 46
3.6 Diagramme de Venn, masse de probabilité 47
3.7 Propriétés des probabilités 48
3.8 Probabilité conditionnelle, théorème de Bayes 50
3.8.1 Probabilité conditionnelle 50
3.8.2 Théorème de la probabilité totale 52
3.8.3 Théorème de Bayes 53
3.9 Indépendance 53
3.9.1 Cas de 2 événements 53
3.9.2 Cas de m événements 54
3.10 Conclusions et extensions 54
4 Variable aléatoire réelle unique 55
4.1 Définition et caractérisations d'une variable aléatoire 55
4.1.1 Motivation 55
4.1.2 Définition d'une variable aléatoire réelle 56
4.1.3 Loi de probabilité 58
4.1.4 Fonction de répartition 58
4.1.5 Variables aléatoires discrètes et continues, densité 66
4.1.6 Caractéristiques expérimentales correspondantes 71
4.1.7 Exemples importants de variables aléatoires 73
4.1.8 Fonction de répartition et densité conditionnelles 79
4.2 Fonctions d'une unique variable aléatoire 82
4.2.1 Espérance 82
4.2.2 Fonction $g(X)$ d'une variable aléatoire 88
4.2.3 Variable aléatoire centrée 91
4.2.4 Moments : cas général 92
4.2.5 Moments d'ordre 2, variance 93
4.2.6 Fonction caractéristique 95
4.3 Conclusions et extensions 98
5 Couple et vecteur de variables aléatoires réelles 99
5.1 Couple de variables aléatoires 99
5.1.1 Loi de probabilité conjointe 99
5.1.2 Fonction de répartition conjointe 99
5.1.3 Cas discret et continu, densité conjointe 102
5.1.4 Propriétés statistiques marginales 103
5.1.5 Fonctions de répartition, densités et probabilités conditionnelles 105
5.1.6 Couple de variables aléatoires indépendantes 105
5.2 Fonctions d'un couple de variables aléatoires 106
5.2.1 Fonction unique de deux variables aléatoires 106
5.2.2 Moments croisés : cas général 107
5.2.3 Moments croisés d'ordre 2, corrélation, covariance 109
5.2.4 Fonction caractéristique conjointe 115
5.2.5 Couple de fonctions de deux variables aléatoires 116
5.3 Vecteur aléatoire 118
5.4 Conclusions et extensions 121
6 Signaux aléatoires réels 122
6.1 Signal aléatoire unique 122
6.1.1 Définition 122
6.1.2 Propriétés statistiques d'un signal aléatoire 126
6.1.3 Stationnarité 129
6.1.4 Caractéristiques des signaux aléatoires stationnaires à l'ordre 2 131
6.1.5 Ergodisme et estimation des propriétés statistiques d'un signal aléatoire 133
6.1.6 Bruit blanc 136
6.2 Couple de signaux aléatoires 137
6.2.1 Principe 137
6.2.2 Résultats principaux 137
6.3 Vecteur de signaux aléatoires 138
6.4 Conclusions et extensions 139
6.5 Annexe A : autre expression de la DSP 139
6.6 Annexe B : variables et signaux aléatoires complexes 139
II Traitement d'antenne 141
7 Position du problème 142
7.1 Système considéré 142
7.2 Objectif 143
7.3 Méthodes actives et passives 143
7.4 Domaines d'application 143
7.5 Conclusions et extensions 144
8 Signaux spatiotemporels et antennes 145
8.1 Signaux spatiotemporels 145
8.1.1 Définition 145
8.1.2 Equation d'onde 145
8.1.3 Solutions particulières de l'équation d'onde 145
8.2 Espace vecteur d'onde - pulsation temporelle 148
8.2.1 Transformation de Fourier des signaux spatiotemporels 148
8.2.2 Filtrage dans l'espace vecteur d'onde - pulsation temporelle 148
8.3 Antenne 149
8.3.1 Capteurs et signaux associés 149
8.3.2 Antenne à sommation pure : structure et expression de la sortie 153
8.3.3 Directivité 154
8.3.4 Echantillonnage spatial et repliement 159
8.3.5 Synthèse des propriétés de l'antenne 164
8.4 Conclusions et extensions 164
8.5 Annexe : autres représentations de la directivité 164
9 Méthodes conventionnelles de formation de voie 167
9.1 Formation de voie par retard et sommation 167
9.1.1 Capteurs et signaux associés 167
9.1.2 Structure générale de l'antenne 167
9.1.3 Choix des filtres du vecteur de pondération 168
9.1.4 Sortie 169
9.1.5 Directivité 170
9.2 Antenne avec placement du lobe principal et des zéros 173
9.2.1 Capteurs et signaux associés 173
9.2.2 Structure de l'antenne 175
9.2.3 Principe de choix des filtres de pondération 175
9.2.4 Valeurs des filtres : cas d'une antenne à deux capteurs 175
9.2.5 Valeurs des filtres: cas d'une antenne à N capteurs 177
9.3 Conclusions et extensions 180
10 Traitement d'antenne adaptatif 181
10.1 Matrice de corrélation spatiospectrale des observations 181
10.2 Méthodes à optimisation sous contrainte 182
10.2.1 Cas général 182
10.2.2 Méthode de formation de voie à variance minimale 183
10.3 Méthodes fondées sur les sous-espaces 190
10.3.1 Capteurs et signaux associés 190
10.3.2 Expressions de la matrice de corrélation spatiospectrale des observations 191
10.3.3 Propriétés de la matrice de corrélation spatiospectrale des observations 193
10.3.4 Algorithme 196
10.4 Conclusions et extensions 197
III Séparation aveugle de sources (SAS) 198
11 Concepts généraux 199
11.1 Objectif de la SAS 199
11.2 Conditions d'étude générales 200
11.2.1 Signaux observés 200
11.2.2 Signaux sources 201
11.2.3 Modèle de mélange 202
11.3 Classes de mélanges usuelles 203
11.3.1 Mélanges Linéaires Instantanés (LI) 203
11.3.2 Mélanges anéchoïques (ou à atténuations et retards) 204
11.3.3 Mélanges convolutifs 205
11.4 Principes majeurs des méthodes de SAS pour mélanges LI 206
11.4.1 Système de séparation 206
11.4.2 Analyse en Composantes Indépendantes et méthodes liées 209
11.4.3 Analyse en composantes parcimonieuses 212
11.4.4 Factorisation en matrices non négatives 219
11.5 Conclusions et extensions 220
12 Méthodes fondées sur les moments ou cumulants 221
12.1 Position du problème 221
12.1.1 Conditions d'étude et notations 221
12.1.2 Structure du chapitre 222
12.2 Cumulants d'une unique variable aléatoire 223
12.2.1 Définition 223
12.2.2 Lien avec les moments 224
12.2.3 Autres propriétés, intérêt 225
12.2.4 Définitions et propriétés liées au kurtosis 226
12.3 Cumulants d'un vecteur aléatoire 228
12.3.1 Définition 228
12.3.2 Lien avec les moments 229
12.3.3 Autres propriétés, intérêt 231
12.4 Capacités et limitations des statistiques d'ordre 2 en SAS 232
12.4.1 Principe et insuffisance du blanchiment 232
12.4.2 Intérêt du blanchiment 233
12.4.3 Exemple de méthode de blanchiment 234
12.5 Méthode simple à fonctions non linéaires ou moments 235
12.5.1 Structure du système de séparation de Hérault-Jutten 235
12.5.2 Existence d'une solution 237
12.5.3 Algorithme d'adaptation : cas général des fonctions non linéaires 238
12.5.4 Algorithme d'adaptation : cas des moments croisés $(3,1)$ 241
12.6 Méthode simple à cumulants de toutes les sorties 243
12.6.1 Principe de la méthode 243
12.6.2 Limitations de la méthode 245
12.7 Méthodes performantes à cumulants de toutes les sorties 246
12.7.1 Principe général 246
12.7.2 Méthode COM2 247
12.7.3 Méthode JADE 247
12.7.4 Notion de méthodes MIMO et MISO 247
12.8 Méthode performante à kurtosis d'une unique sortie 248
12.8.1 Critère de séparation et méthode à déflation 248
12.8.2 Algorithmes d'optimisation du kurtosis : montée en gradient et FastICA 252
12.8.3 Limitations de l'approche 254
12.9 Conclusions et extensions 254
12.10Annexe : skewness 254
13 Méthode de SAS fondée sur la vraisemblance 255
13.1 Conditions d'étude et notations 255
13.2 Méthode du maximum de vraisemblance 255
13.2.1 Critère de séparation 255
13.2.2 Gradient de la log-vraisemblance 259
13.2.3 Optimisation par montée en gradient et mise en œuvre de la méthode 260
13.3 Conclusions et extensions 261
14 Théorie de l'information et application à la SAS 262
14.1 Position du problème 262
14.1.1 Conditions d'étude et notations 262
14.1.2 Structure du chapitre 262
14.2 Entropie 262
14.2.1 Objectif 262
14.2.2 Mesure d'incertitude d'une expérience : cas d'issues équiprobables 263
14.2.3 Entropie d'une expérience : cas général 265
14.2.4 Entropie d'une variable aléatoire réelle discrète 266
14.2.5 Propriétés de l'entropie 268
14.3 Entropie conjointe, entropie conditionnelle 271
14.3.1 Commentaires préliminaires sur deux cas particuliers 271
14.3.2 Démonstration pour des expériences quelconques 272
14.3.3 Application aux variables aléatoires réelles discrètes 274
14.3.4 Propriétés de l'entropie conditionnelle 275
14.4 Information mutuelle 277
14.4.1 Définition 277
14.4.2 Propriétés 277
14.5 Cas de variables aléatoires réelles continues 280
14.5.1 Entropie différentielle 280
14.5.2 Entropies différentielles conjointe et conditionnelle 280
14.5.3 Information mutuelle 281
14.5.4 Propriétés 282
14.6 Méthode de SAS fondée sur l'information mutuelle des sorties 283
14.6.1 Critère de séparation 283
14.6.2 Expressions de l'information mutuelle des sorties 284
14.6.3 Gradient de l'information mutuelle des sorties 285
14.6.4 Lien avec l'approche fondée sur la vraisemblance 286
14.7 Méthode de SAS fondée sur le principe «infomax» 287
14.7.1 Structure du système de séparation 287
14.7.2 Critère de séparation 287
14.7.3 Lien avec les approches précédentes 288
14.8 Méthode de SAS à néguentropie d'une unique sortie 288
14.8.1 Notion complémentaire de théorie de l'information : néguentropie 288
14.8.2 Méthode de SAS fondée sur la néguentropie; montée en gradient et FastICA 290
14.9 Conclusions et extensions 292
14.10Annexe : dérivée de l'entropie différentielle 292
Références 295
Notations et abréviations 302
Index 303

