Vocabulaire ensembliste calculs algébriques

RÉPARTITION DES EXERCICES

Ensembles et applications	,
Calculs algébriques	-
Problème	,

I. ÉNONCÉS DES EXERCICES

1.01 Soit A et B deux parties d'un ensemble E. Montrer que si $A \cup B = A$ et $A \cap B = A$, alors A = B.

 \Diamond

Soit A et B deux parties d'un ensemble E. Montrer qu'en général $(A \setminus B) \cup B \neq A$.

<

1.03 Soit A l'ensemble des entiers naturels pairs et B l'ensemble des entiers naturels multiples de 3. Déterminer $A \cap B$ et $A \cup B$.

 \Diamond

- **1.06** Soit f une application d'un ensemble E dans un ensemble F. Soit $(A_i)_{i\in I}$ (respectivement $(B_j)_{j\in J}$) une famille de parties de E (resp. de F). Vérifier les propriétés suivantes :

$$\mathbf{a)} \ f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i).$$

b) $f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$, et montrer que f est injective si et seulement

si
$$\forall (A_1, A_2) \in (\mathcal{P}(E))^2$$
, $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$.
c) $f^{-1}(\bigcup_{j \in J} B_j) = \bigcup_{j \in J} f^{-1}(B_j)$.

c)
$$f^{-1}(\bigcup_{j\in J} B_j) = \bigcup_{j\in J} f^{-1}(B_j).$$

$$\mathbf{d}) f^{-1} \Big(\bigcap_{j \in J} B_j \Big) = \bigcap_{j \in J} f^{-1} (B_j).$$

- **1.07** Soit f une application d'un ensemble E dans lui-même telle que $f \circ f = f$.
 - a) Montrer que si f est injective, alors $f = id_E$.
 - **b)** Montrer que si f est surjective, alors $f = id_E$.

- **1.08** Soient E et F deux ensembles et f une application de E dans F.
 - a) Montrer que f est injective si et seulement si :

$$\forall A \in \mathcal{P}(E), f^{-1}(f(A)) = A.$$

b) Montrer que f est surjective si et seulement si :

$$\forall B \in \mathcal{P}(F), f(f^{-1}(B)) = B.$$

1.09 Soient A et B deux parties d'un ensemble non vide E.

Soit
$$\varphi : \mathcal{P}(E) \to \mathcal{P}(E) \times \mathcal{P}(E), X \mapsto (X \cup A, X \cup B).$$

- a) Montrer que φ est non surjective.
- **b)** Montrer que φ est injective si et seulement si $A \cap B = \emptyset$.

1.10 Soit $n \in \mathbb{N}^*$. Simplifier les expressions suivantes :

a)
$$\sum_{k=1}^{n} k$$
 b) $\sum_{k=1}^{n} k^2$ c) $\sum_{k=1}^{n} k^3$ d) $\sum_{k=1}^{n} k^2 (n+1-k)$ e) $\sum_{k=1}^{n} k^2 (k+1)$

f)
$$\sum_{1 \le i < j \le n}^{n} ij$$
 g) $\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} \inf(i, j)$ h) $\sum_{1 \le i < j \le n} (j - i)$ (avec $n \ge 2$)

i)
$$\sum_{1 \leq i \leq n} \frac{i^2}{2j+1}$$

1.11 Exemples de sommes ou produits télescopiques

n étant un entier naturel, au moins égal à 2, simplifier les expressions

a)
$$\sum_{k=0}^{n} k.k!$$
 b) $\sum_{k=0}^{n} \frac{k}{(k+1)!}$ c) $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ d) $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$

e)
$$\prod_{k=1}^{n} \left(1 + \frac{2}{k(k+3)}\right)$$
 f) $\prod_{k=2}^{n} \left(1 - \frac{2}{k(k+1)}\right)$

g)
$$\sum_{k=1}^{n} \frac{\sin \frac{1}{k(k+1)}}{\cos \frac{1}{k} \cos \frac{1}{k+1}}$$
 h) $\sum_{k=2}^{n} \ln \left(\frac{\ln^{2}(k+1)}{\ln(k) \ln(k+2)} \right)$.

1.12 Montrer que pour tout entier naturel k:

$$\frac{2k}{k^4+k^2+1}=\frac{1}{k^2-k+1}-\frac{1}{k^2+k+1}$$
 Pour $n\in\mathbb{N}^*$, simplifier l'expression $\sum\limits_{k=0}^n\frac{k}{k^4+k^2+1}$.

1.13 Pour $n \in \mathbb{N}^*$, calculer $\sum_{k=1}^{2n} (-1)^k k$.

1.14 Calculer les sommes suivantes :

a)
$$\sum\limits_{k=0}^{n}rac{1}{k+1}inom{n}{k}$$
 b) $\sum\limits_{k=0}^{n}kinom{n}{k}$ c) $\sum\limits_{k=0}^{n}(-1)^{k-1}kinom{n}{k}$

d)
$$\sum_{k=0}^{m} (-1)^k \binom{n}{k} \ (m \leqslant n)$$
 e) $\sum_{j=0}^{m} \binom{n+j}{k} \ (k \leqslant n)$ **f**) $\sum_{k=0}^{n} (\binom{n}{k})^2$

$$\mathbf{g}) \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} \quad (k \leqslant \min(m; n)) \qquad \mathbf{h}) \sum_{k=0}^{n} (-1)^k \binom{n}{k}^2$$

i) On considère deux entiers n et p, avec $p \leq n$. Montrer que

$$\sum_{k=0}^{p} \binom{n}{k} \binom{n-k}{p-k} = 2^p \binom{n}{p},$$

puis déterminer
$$\sum_{k=0}^{p} (-1)^k \binom{n}{k} \binom{n-k}{p-k}$$

Dans la plupart des cas on considèrera $n \geqslant 1$. Pour **f**) et **g**) on pourra donner une preuve combinatoire et une preuve utilisant la formule du binôme de Newton.

1.15 Prouver que pour $n \geqslant 1$, $\sum_{k=0}^{n} k {n \choose k}^2 = n {2n-1 \choose n-1}$.

1.16 Prouver que pour
$$n \ge 1$$
, $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

1.17 (*) On veut montrer que, pour tout entier naturel n:

$$\sum_{p=0}^{n} (-1)^{p} 4^{n-p} \binom{2n+1-p}{p} = n+1, \sum_{p=0}^{n} (-1)^{p} 4^{n-p} \binom{2n-p}{p} = 2n+1$$

Pour cela, on pose:

$$a_n = \sum_{p=0}^{n} \left(-\frac{1}{4}\right)^p {2n+1-p \choose p}, b_n = \sum_{p=0}^{n} \left(-\frac{1}{4}\right)^p {2n-p \choose p}$$

 $\mathbf{1}^{\circ}$) Ecrire a_{n+1} en fonction de b_{n+1} et a_n , puis b_{n+1} en fonction de b_n et

2°) Donner une relation ne faisant intervenir que des termes de la suite $(a_n)_n$. Conclure alors à l'aide d'une récurrence.

1.18 Quel est le coefficient de x^{17} dans le développement de $(1 + x^5 + x^7)^{20}$?

1.19 On définit une famille d'entiers B_n^k de la façon suivante :

- on pose $B_0^0 = 1$,
- pour tout $n \in \mathbb{N}$, pour tout $k \in \mathbb{N}$, si k < 0 ou k > 2n, alors $B_n^k = 0$,
- pour tout $n \in \mathbb{N}$, pour tout $k \in \mathbb{N}$, $B_{n+1}^{k+1} = B_n^{k-1} + B_n^k + B_n^{k+1}$.
- 1°) Montrer que pour tout $n \in \mathbb{N}$, $(1 + X + X^2)^n = \sum_{k=0}^{2n} B_n^k X^k$.
- **2°**) Calculer $B_n^0 + B_n^1 + \dots + B_n^{2n}$ et $B_n^0 B_n^1 + B_n^2 \dots + B_n^{2n}$ **3°**) Montrer que $(B_n^0)^2 + (B_n^1)^2 + \dots + (B_n^{2n})^2 = B_{2n}^{2n}$.

- **1.20** a) Montrer que pour tout entier naturel n, il existe deux entiers naturels a_n et b_n tels que $(1+\sqrt{2})^n = a_n + b_n\sqrt{2}$.
 - **b**) Montrer que l'on a aussi $(1-\sqrt{2})^n=a_n-b_n\sqrt{2}$, en déduire la valeur $de a_n^2 - 2b_n^2$.
 - c) En déduire l'existence d'un entier N tel que $(1+\sqrt{2})^n=\sqrt{N}+\sqrt{N-1}$.

1.21 Montrer que pour $n \in \mathbb{N}^*$, on a :

$$(2n+1)! \times (2n-1)! \times \cdots \times 3! \times 1! \ge [(n+1)!]^{n+1}.$$

1.22 (*) Dans ce problème on cherche à démontrer que pour $n \in \mathbb{N}$, avec $n \geq 2$:

$$\sum_{n=0}^{n-1} {2n \choose p} (-1)^p (n-p)^2 = 0$$

- a) Montrer pour $m\geqslant 1$ et q quelconque : $\sum\limits_{p=0}^{q}(-1)^p\binom{m}{p}=(-1)^q\binom{m-1}{q}$.
- **b)** Montrer pour $m \ge 2$ et q quelconque

$$\sum_{p=0}^{q} (-1)^p p \binom{m}{p} = (-1)^q m \binom{m-2}{q-1}$$

- c) Calculer de même $\sum_{p=0}^{q} (-1)^p p(p-1) {m \choose p}$ pour $m \geqslant 3$ et q quelconque.
- **d)** Donner alors une expression de $\sum_{r=0}^{q} (-1)^p (x-p)^2 {m \choose p}$ uniquement en

fonction de x (réel quelconque), de m,q et du coefficient binomial $\binom{m-2}{a-1}$.

e) Prouver le résultat annoncé.

II. INDICATIONS

- 1.08. a) et b) Prouver séparément les deux sens et procéder par double inclusion.
- **1.09.** b) Examiner $\varphi(A \cap B)$.
- **1.10. b) c)** Partir du développement de $(k+1)^3$ ou $(k+1)^4$.
- 1.13. Séparer la somme suivant les indices pairs et les indices impairs.

1.14. d) et e) utiliser la formule
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
, f) et h) écrire $\binom{n}{k}^2 = \binom{n}{k} \binom{n}{n-k}$.

1.15. Utiliser
$$k \binom{n}{k} = n \binom{n-1}{k-1}$$
 et l'exercice **1. 14 g**).

1.16. Utiliser
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 et $\binom{n-1}{k-1} = \frac{k}{n} \binom{n}{k}$.

- **1.17.** Transformer l'écriture de a_{n+1} à l'aide de la formule de Pascal. Procéder de même pour b_{n+1} .
- **1.19.** 3) Montrer que $B_n^k = B_n^{2n-k}$, puis utiliser une méthode analogue à celle du **1.14.** f).
- **1.20.** a) et b) Développer à l'aide de la formule du binôme de Newton, puis distinguer les indices pairs des indices impairs.
- **1.21.** Procéder par récurrence.

III. CORRIGÉS DÉTAILLÉS DES EXERCICES

Corrigé 1.01

On a $B\subset A\cup B=A$ et $A=A\cap B\subset B$, donc $B\subset A$ et $A\subset B$, soit :

$$A = B$$

Corrigé 1.02

On a $B \subset (A \setminus B) \cup B$, donc si B «déborde» de A, l'ensemble $(A \setminus B) \cup B$ contient des éléments qui ne sont pas dans A.

On prend par exemple $A = \emptyset$ et $B \neq \emptyset$, alors $(A \setminus B) \cup B = \emptyset \cup B = B \neq A$.

Corrigé 1.03

 \star $A\cap B$ est l'ensemble des entiers naturels multiples à la fois de 2 et 3, donc qui contiennent 2 et 3 dans leur décomposition en facteurs premiers, c'est-à-dire qui sont multiples de 6 :

$$A \cap B = 6.\mathbb{N}$$

$$\star n \in A \cup B \iff 2 \mid n \text{ ou } 3 \mid n.$$

Classons les entiers selon leur reste dans la division par 6 :

Si $n \equiv 0 \pmod{6}$ ou $n \equiv 2 \pmod{6}$ ou $n \equiv 4 \pmod{6}$, alors n est pair et appartient à $A \cup B$.

Si $n \equiv 3 \pmod{6}$, alors n est multiple de 3 et appartient à $A \cup B$.

Si $n \equiv 1 \pmod{6}$ ou $n \equiv 5 \pmod{6}$, alors n est de la forme 6k + 1 ou 6k + 5 et n'est pas divisible par 2 (le reste vaut 1) ni par 3 (le reste vaut 1 ou 2), donc n 'appartient pas à $A \cup B$.

$$A \cup B = \{ n \in \mathbb{N} \ / \ \exists \ k \in \mathbb{N}, \exists \ r \in \{0, 2, 3, 4\} \}, n = 6k + r \}$$

Corrigé 1.04

$$\star\,\mathbb{N}=A_1\subset\bigcup_{n=1}^\infty A_n\subset\mathbb{N},\mathrm{donc}\left[\bigcup_{n=1}^\infty A_n=\mathbb{N}\right]$$

 $\star 0$ appartient à tous les A_n , donc $0 \in \bigcap_{n=1}^{\infty} A_n$,

soit alors $p \in \mathbb{N}^*$, p n'est pas un multiple de p+1, donc $p \notin A_{p+1}$ et a fortiori n'appartient pas à l'intersection des A_n , soit :

$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$

Corrigé 1.05

 $\mathbf{1}^{\circ}$) Posons $S_n = \left[a + \frac{1}{n}, b - \frac{1}{n} \right]$, pour tout n, on a : $a+\frac{1}{n+1} < a+\frac{1}{n} < b-\frac{1}{n} < b-\frac{1}{n+1}$ donc $S_n\subset S_{n+1}$ et on a affaire à une suite croissante de segments.

 \star Si $x \in \bigcup_{n=1}^{\infty} S_n$, alors $\exists n \in \mathbb{N}^*, x \in S_n$, ce qui entraı̂ne x > a et x < b.

* Réciproquement, si x > a et x < b, on peut trouver un entier $n_0 \in \mathbb{N}^*$ tel que $a + \frac{1}{n_0} \leqslant x < b - \frac{1}{n_0}$, il suffit pour cela d'avoir $n_0 \geqslant \frac{1}{x-a}$ et $n_0 \geqslant \frac{1}{b-x}$, on peut donc prendre $n_0 = 1 + \max(\lfloor \frac{1}{x-a} \rfloor, \lfloor \frac{1}{b-x} \rfloor), x$ appartient alors à S_{n_0} donc à la réunion des S_n .

Ainsi:

$$A =]a, b[$$

2°) Pour tout
$$n \in \mathbb{N}^*$$
, $[a,b] \subset I_n = \left]a - \frac{1}{n}, b + \frac{1}{n}\right[$, donc $[a,b] \subset B = \bigcap_{i=1}^{\infty} I_n$.

Réciproquement soit $x \in B$, alors $\forall n \in \mathbb{N}^*, a - \frac{1}{n} < x < b + \frac{1}{n}$, un passage à la limite dans ces inégalités donne a priori des inégalités larges et $a \leqslant x \leqslant b$, c'est-à-dire $x \in [a, b]$. Ainsi :

$$B = [a, b]$$

Ces exemples prouvent qu'une réunion infinie d'intervalles fermés peut être un intervalle ouvert et qu'une intersection infinie d'intervalles ouverts peut être un intervalle fermé.

Corrigé 1.06

a)
$$y \in f(\bigcup_{i \in I} A_i) \iff \exists x \in \bigcup_{i \in I} A_i, y = f(x) \iff \exists i \in I, \exists x \in A_i, y = f(x)$$

$$\iff \exists i \in I, y \in f(A_i) \iff y \in \bigcup_{i \in I} f(A_i).$$

Donc:

$$f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$$

b)
$$\star$$
 Soit $y \in f(\bigcap_{i \in I} A_i)$, alors $\exists x \in \bigcap_{i \in I} A_i$ tel que $y = f(x)$.

On a donc, pour tout $i\in I, x\in A_i$ et y=f(x), d'où $\forall\, i\in I, y\in f(A_i)$, soit : $\boxed{f\bigl(\bigcap_{i\in I}A_i\bigr)\subset\bigcap_{i\in I}f(A_i)}$

$$f(\bigcap_{i\in I}A_i)\subset\bigcap_{i\in I}f(A_i)$$

Il n'était pas possible de raisonner ici par équivalence, car si $\forall i \in I, y \in f(A_i)$, alors pour chaque i il existe un élément x_i dans A_i tel que $y = f(x_i)$, mais rien ne permet d'affirmer que l'on peut choisir x_i indépendamment de i.

* Supposons que $\forall (A_1, A_2) \in (\mathcal{P}(E))^2, f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ et supposons f non injective.

Il existe alors $(x_1, x_2) \in E^2$, avec $x_1 \neq x_2$ et $f(x_1) = f(x_2)$.

Prenons $A_1 = \{x_1\}$ et $A_2 = \{x_2\}$, on a :

$$A_1 \cap A_2 = \emptyset$$
 et $f(A_1) \cap f(A_2) = \{f(x_1)\} \cap \{f(x_2)\} = \{f(x_1)\} \neq \emptyset$

Ceci contrdit l'hypothèse de l'énoncé et f est donc injective.

* Réciproquement, supposons f injective et soit $(A_1, A_2) \in (\mathcal{P}(E))^2$.

Soit $y \in f(A_1) \cap f(A_2)$, alors $y \in f(A_1)$ et $y \in f(A_2)$, donc :

$$\exists x_1 \in A_1, y = f(x_1) \text{ et } \exists x_2 \in A_2, y = f(x_2)$$

Par conséquent $f(x_1)=f(x_2)$ et donc $x_1=x_2\in A_1\cap A_2$, d'où $y\in f(A_1\cap A_2)$. Ainsi $f(A_1) \cap f(A_2) \subset f(A_1 \cap A_2)$ et comme l'inclusion contraire est toujours vraie, on a l'égalité.

$$\forall (A_1, A_2) \in (\mathcal{P}(E))^2, f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \Longleftrightarrow f \text{ injective}$$

$$c) \ x \in f^{-1} \left(\bigcup_{j \in J} B_j \right) \Longleftrightarrow f(x) \in \bigcup_{j \in J} B_j \Longleftrightarrow \exists j \in J, f(x) \in B_j$$

$$\iff \exists j \in J, x \in f^{-1}(B_j) \Longleftrightarrow x \in \bigcup_{j \in J} f^{-1}(B_j)$$
Donc:
$$f^{-1} \left(\bigcup_{j \in J} B_j \right) = \bigcup_{j \in J} f^{-1}(B_j)$$

$$f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j)$$

d)
$$x \in f^{-1}(\bigcap_{j \in J} B_j) \iff f(x) \in \bigcap_{j \in J} B_j \iff \forall j \in J, f(x) \in B_j$$

$$x \in f^{-1}(\bigcap_{j \in J} B_j) \iff \forall j \in J, x \in f^{-1}(B_j) \iff x \in \bigcap_{j \in J} f^{-1}(B_j)$$

Donc:

$$f^{-1}(\bigcap_{j\in J} B_j) = \bigcap_{j\in J} f^{-1}(B_j)$$

Corrigé 1.07

On a: $\forall x \in E, f(f(x)) = f(x)$.

- a) Si f est injective, l'égalité précédente donne, pour tout $x \in E$, f(x) = x et f est l'identité de E.
- **b)** Si f est surjective, soit $x \in E$, il existe $t \in E$ tel que x = f(t), et alors l'hypothèse donne : f(x) = f(f(t)) = f(t) = x. Ceci étant vrai pour tout $x \in E$, on a encore $f = id_E$.

Corrigé 1.08

- a) \star Supposons f injective. Soit alors $A \in \mathcal{P}(E)$.
- \rightarrow Soit $x \in A$, alors $f(x) \in f(A)$, ce qui donne, par définition même de l'image réciproque, $x \in f^{-1}(f(A))$, donc $A \subset f^{-1}(f(A))$ (il est à noter que l'injectivité n'a pas été utile).
- \rightarrow Soit $x \in f^{-1}(f(A))$, alors $f(x) \in f(A)$, donc il existe $y \in A$ tel que f(y) = f(x) et comme f est injective, y = x et donc $x \in A$, ainsi $f^{-1}(f(A)) \subset A$. Par double inclusion, on a donc :

$$f$$
 injective $\implies \forall A \in \mathcal{P}(E), A = f^{-1}(f(A))$

* Réciproquement, supposons que l'on ait l'identité ensembliste précédente.

Soit $x, y \in E$ tels que f(x) = f(y). On a donc :

$${x} = f^{-1}({f(x)}) = f^{-1}({f(y)}) = {y}$$

et f est injective. Ainsi :

$$f$$
 injective $\iff \forall A \in \mathcal{P}(E), A = f^{-1}(f(A))$

- **b**) \star Supposons f surjective. Soit alors $B \in \mathcal{P}(F)$.
- \rightarrow Soit $y \in f(f^{-1}(B))$, alors il existe $x \in f^{-1}(B)$ tel que y = f(x) et comme $x \in f^{-1}(B)$ signifie que $f(x) \in B$, on a $y \in B$ et $f(f^{-1}(B)) \subset B$ (notons également que la surjectivité de f n'a pas été utile).
- ightarrow Soit $y \in B$, comme f est surjective, il existe $x \in E$ tel que $y = f(x) \in B$. Donc $x \in f^{-1}(B)$ et $y = f(x) \in f(f^{-1}(B))$, donc $B \subset f(f^{-1}(B))$. Par double inclusion, on a donc :

$$f$$
 surjective $\implies \forall B \in \mathcal{P}(F), B = f(f^{-1}(A))$

 \star Réciproquement, supposons que l'on ait l'identité ensembliste précédente. On a en particulier, $f(f^{-1}(F)) = F$. Mais par définition d'une **application** $f^{-1}(F) = E$. On a donc ici f(E) = F, ce qui est la surjectivité de f. Ainsi :

$$f$$
 surjective $\iff \forall B \in \mathcal{P}(F), B = f(f^{-1}(A))$