Table des matières

1.	Suites et séries	•	•		•	1							
	I. Suites numériques					$1\\7$							
	II. Séries numériques					8							
	III. Produits infinis												
	IV. Suites de fonctions												
	V. Séries de fonctions												
	VI. Produits infinis de suites de fonctions					33							
	Exercices					36							
2.	Espaces métriques					45							
	I. Définitions					46							
	II. Espaces métriques complets					53							
	A. Définition et exemples												
	B. Propriétés.	•	•	•	•	56							
	- Théorème des fermés emboîtés												
	- Théorème des parties enchaînées					56							
	- Ineoreme des parties enchannees												
	- Théorème de BAIRE					57							
	- Fonctions de première classe de BAIRE	•	•	•	•	58							
	- Fonctions de première classe de BAIRE												
	- Théorème de BANACH-STEINHAUS ; exercice					61							
	- Application aux séries de FOURIER					63							
	- Application à l'interpolation de LAGRANGE					63							
						64							
	III. Espaces métriques compacts					64							
	•												
	B. Applications continues sur un espace métrique compact.C. Propriété de BOREL-LEBESGUE												
	D. Ensembles équicontinus					69							
	- Propriétés liées à l'équicontinuité												
		•	•	•	•								
	- Théorème d'ASCOLI	•	•	٠	٠	71 73							
	- Applications	•	•	•	•	74							
		•	•	•	•	77							
	E. Translatées d'une fonction	•	•	•	٠	11							
	IV. Connexité	•			•								
	V. Activités					81							

A. Carac	térisation des fe	onctions	polyr	nomi	ales								. 81
	es d'une fonction												
Exercices													. 86
Solutions													
3. Fonctions p	polynomiales			•	•	•	•	•	•	•	•	•	. 95
	mation des fo												
	es. Extension												. 96
A. Le the	éorème de WEI	ERSTRA	ASS										. 96
B. Appro	eximation polyn	omiale d	l'une	fonc	tion	et	de	ses	déi	rivé	es		102
C. Théor	èmes de MUNT	ΓZ .											107
II. Meilleu	re approxima	tion .								•	•	•	114
A. Résult	tats préliminair	es liés à	la coi	nvex	ité.								114
B. Appro	eximation dans	un s.e.v.	de d	imer	isioi	ı fii	nie						117
C. La pro	opriété d'altern	ance de '	ГСНІ	EBY	СН	ΕV							126
Exercices													128
III. Fonction	ons polynôme	s prena	$\mathbf{nt} \ \mathbf{d}$	es v	aleı	urs	en	tiè	res	su	r d	es	
	s. Extension												130
	ômes de HILBE												131
·	ions entières pro												133
	ons polynôme												139
	lation de LAC	_											149
_	ution du problè												149
	ation comme me		•										151
C. Stabil	ité et converger	nce de l'i	nterp	olati	ion								158
	oolation de LAC		_										163
VI. Interpe	olation polyno	omiale į	oar n	nore	ceau	ıx							169
A. Interp	olation linéaire	par mor	ceaux	х.									169
B. Impos	ssibilité de «bor	s raccor	ds» p	arab	olic	ues	3						173
	raccords cubiqu												174
D. Les fo	onctions splines	cubiques											177
VII D-1	^												104
v	ômes orthogo												184
Exercices	ition												184
													186
_	iétés générales o				_								189
Exercices													192
C. Propr	iétés communes	aux pol	ynôm	es c	lassi	ique	es						193
4. Fonctions of	de référence												209
	s monotones												209
	tonie : limite, c												209
	tonie et dérivat												213
	tonie et intégra												214
	ture de $M(I)$.												216
	s utilisations de												217

Table des matières vii

	II. Fonctions dérivables		218 219
	B. Formules de TAYLOR		222
	C. Dérivation des suites et séries de fonctions		225
	D. Résolution d'équations non linéaires		227
	E. Formule d'EULER MAC LAURIN		248
	F. Majoration de polynômes et de leurs dérivées		253
	III. La fonction exponentielle	• •	26 1
	IV. Fonctions convexes		26 5
5.	Séries entières, fonctions analytiques		277
	I. Compléments sur les séries entières		277
	II. Fonctions analytiques		301
	III. Exemples de fonctions analytiques		303
	A. Fonctions complètement convexes		303
	B. Fonctions de classe \mathcal{C}^{∞} dont les dérivées gardent un signe c		305
	C. Fonctions absolument monotones		309
	D. Fonctions totalement monotones		313
	E. Fonctions complètement monotones		316
	F. Fonctions de GRUSS; G-fonctions		316
	IV. Fonctions analytiques d'une variable complexe		318
6.	Fonctions quasi-analytiques	• •	327
	I. Propriétés élémentaires des suites de $\mathcal A$		327
	II. Exemples		328
	III. Classe quasi-analytique		331
	A. Condition nécessaire de quasi-analyticité		332
	B. Condition suffisante de quasi-analyticité		334
	- Propriétés		335
	- Théorème. Formule de BANG		335
	- Une condition nécessaire et suffisante de quasi-analyticité		339
	C. Un théorème de DENJOY-CARLEMAN		340
	- Exercice		342
7	Intégration		345
•	_	• •	
	I. Primitives de fonctions continues	• •	345
	II. Intégrale de RIEMANN	• •	347
	III. Primitives et intégrales	• •	368
	IV. Intégrale de LEBESGUE		37 4
	A. Intégrale supérieure d'un élément de \mathcal{K}^{\star}		375
	B. Intégrales supérieure et inférieure de LEBESGUE		37
	C. Intégrale de LEBESGUE d'une fonction		383
	V. Intégration numérique		409
	v. indexiation numeridae		4U?
	A. Procédé mécanique de calcul de $\int P(t)w(t)dt$		410

B. Majoration de l'erreur									416 422
VI. Intégrale de LEBESGUE dans l'espa	ce	\mathbb{R}^{m}	m	, >	2				422
Exercices									432
Activités									452
Parties précompactes de $L^p(\mathbb{R})$									452
Problème des moments									456
8. Fonctions à variation bornée				•					461
I. Exemples et structure algébrique									461
II. Fonctions à variation bornée et restri	cti	on							462
III. Caractérisation des fonctions réelles									462
IV. Propriétés topologiques				•					464
V. Théorème de JORDAN									465
									465
VI. Fonctions à variation bornée et dériv	vati	ion		•	•			•	467
9. Convolution sur la droite				•					485
I. Définitions, propriétés générales .									485
A. Définition									485
B. Support du produit de convolution .									485
II. Convolution des fonctions									486
A. Convolution de deux éléments de $L^1(\mathbb{R})$									486
B. Convolution d'un élément de $L^1(\mathbb{R})$ et d									487
C. Convolution d'un élément de $L^1(\mathbb{R})$ et d									488
D. Convolution d'un élément de $L^p(\mathbb{R})$ et d							` /		489
E. Convolution d'une fonction f intégrable						,	/	•	100
d'une fonction localement de puissance					_			R	489
F. Convolution dans E_+				\sim					490
II. Régularisation									491
III. Convolution des fonctions périodique									494
Exercices									497
	•	•	•	•	•	•	•	•	10.
10. Séries de FOURIER				•					503
I. Introduction aux séries de FOURIER			_						503
A. Équation des cordes vibrantes		•	•	•	•	•	٠	•	503
B. Étude des séries trigonométriques		•	•	•	•	•	•	•	505
II. Coefficients de FOURIER	•	•	•	•	•	•	•	•	507
III. Convergence des séries de FOURIEI	R	•	•	•	•	•	•	•	512
		•		•	•	•	•	•	512
B. Convergence ponctuelle dans le cas d'un							•	•	513
C. Noyaux de sommabilité					_	2π	•	•	516
•			•	•	•	•	•	•	
IV. À propos des opérateurs de FOURII			•	•	•	•	•	•	518
A. Calcul de la norme de l'opérateur de FO					•	٠		•	518
B. Estimation de $ D_n _1$									518
C. Caractère optimal de l'opérateur de FOU					•	•	•	•	518

Table des matières ix

- Application à l'interpolation de LAGRA	ΑN	GE.							521
									522
V. L'algèbre \mathcal{A}									522
B. Étude de la convergence dans \mathcal{A}									522
C. Caractères de \mathcal{A}									527
D. Caractère local de l'appartenance à ${\cal A}$									528
E. Le théorème de WIENER-LEVY .									529
Exercices			•						530
A. Détermination des séries de FOURIER e									530
B. Propriétés des coefficients de FOURIER									532
C. Séries trigonométriques									535
D. Exercices divers sur les séries de FOURI	ER	J							539
11 17									F 4F
11. Fonctions presque-périodiques									545
I. Définition et caractérisations			•			•	•	•	547
II. Moyenne d'une fonction presque-péri	odi	iqu	е						550
III. Propriétés de la forme linéaire M			•						553
IV. Coefficients de FOURIER-BOHR d'									557
V. Fonction de corrélation. Produit de c									558
VI. Transformation de FOURIER-BOHI									559
Exercices									567
Lacronous	•	•	•	•	•	•	•	•	501
12. Transformation de FOURIER			•						569
I. Propriétés élémentaires									569
II. La cotransformation de FOURIER									573
III. Espace de SCHWARTZ									575
Exercices									576
- Spectre de $\mathcal F$									576
- Formule de POISSON									577
- Noyau de FEJER									577
- Injectivité de la transformée de FOURIEI									578
INDEV									570