

Thème 1 - Structures algébriques usuelles

[S1.1] Magmas

• Un magma est un couple (E,*), où E est un ensemble et * une loi de composition interne sur E, c'est-à-dire une application de E^2 dans E.

Si (E,*) est un magma, une partie F de E est dite stable par la loi * si :

$$\forall (x,y) \in F^2, x * y \in F.$$

La restriction de la loi * à F^2 s'appelle alors la loi induite sur F.

Associativité

Soit (E,*) un magma. La loi * est dite associative si :

$$\forall (x,y,z) \in E^3, (x*y)*z = x*(y*z).$$

Si tel est le cas, pour tout élément x de E, et tout entier n de \mathbb{N}^* , on pourra définir l'itéré n^e de x par : $x^{(n)} = \underbrace{x * x * \dots * x}_{n \text{ fois}}$ (noté x^n si la loi est notée

multiplicativement, ou nx si la loi est notée additivement).

On a facilement, pour tous n et m de \mathbb{N}^* :

$$x^{(n+m)} = x^{(n)} * x^{(m)}$$
 et $(x^{(n)})^{(m)} = x^{(nm)}$.

• Commutativité

Soit (E,*) un magma. Deux éléments x et y de E sont dits permutables (ou qu'ils commutent) si x*y = y*x.

Si x et y sont deux éléments permutables d'un magma associatif (E,*), alors :

- pour tous entiers n et m de \mathbb{N}^* , $x^{(n)}$ et $y^{(m)}$ sont permutables;
- pour tout entier $n \in \mathbb{N}^*$, $x^{(n)} * y^{(n)} = (x * y)^{(n)}$.

La loi * est dite commutative si tous les éléments commutent entre eux, soit :

$$\forall (x,y) \in E^2, x * y = y * x.$$

• Élément neutre

On appelle élément neutre d'un magma (E,*) un élément $e \in E$ tel que :

$$\forall x \in E, x * e = e * x = x.$$

Si (E,*) possède un élément neutre, celui-ci est unique. Un magma qui possède un élément neutre est dit unifère.

Symétrique

• Soit (E,*) un magma unifère d'élément neutre e, et x un élément de E. On appelle symétrique à gauche (respectivement à droite) de x un élément x' (respectivement x'') de E, s'il existe, tel que :

$$x' * x = e$$
 (respectivement $x * x'' = e$).

Si x' (respectivement x'') existe, on dit que x est symétrisable à gauche (respectivement à droite).

• Soit (E,*) un magma unifère d'élément neutre e, et x un élément de E. On appelle symétrique de x un élément x' de E, s'il existe, tel que :

$$x' * x = x * x' = e.$$

Si x' existe, x est dit symétrisable.

Cela équivaut à dire que x est symétrisable à droite et à gauche et que ses symétriques à droite et à gauche sont égaux.

Exemple : dans l'ensemble $\mathcal{A}(E,E)$ des applications de E dans E, muni de la loi \circ , les éléments symétrisables à droite sont les applications surjectives et les éléments symétrisables à gauche sont les applications injectives. Les éléments symétrisables sont donc les applications bijectives de E sur E.

- Soit (E,*) un magma associatif et unifère ((E,*) s'appelle alors un monoïde).
 - Si un élément x de E admet un symétrique à droite et un symétrique à gauche, ceux-ci sont égaux (et x est alors symétrisable).
 - Si un élément x de E est symétrisable, son symétrique est unique.
 - Si un élément x de E est symétrisable, de symétrique x', alors x' est symétrisable, de symétrique x.
 - Si x et y sont symétrisables (de symétriques respectifs x' et y'), il en est de même de x*y et : (x*y)' = y'*x'.

✓ Lorsque la loi est notée multiplicativement, on parle *d'inverse* au lieu de symétrique. Lorsqu'elle est notée additivement, on parle *d'opposé*.

. Soit (E,*) un magma unifère, et x un élément de E. On note : $x^{(0)}=e$.

Si x est symétrisable, de symétrique x', pour tout $n \in \mathbb{N}^*$ on note $x^{(-n)}$ l'élément $x'^{(n)}$ (ainsi, $x' = x^{(-1)}$).

On peut ainsi, lorsque x est symétrisable, étendre la notation $x^{(n)}$ pour $n \in \mathbb{Z}$.

– Soit x un élément symétrisable de E. Alors, pour tous n et m de $\mathbb{Z},$ on a :

$$x^{(n+m)} = x^{(n)} * x^{(m)}$$
 et $(x^{(n)})^{(m)} = x^{(nm)}$.

- Soient x et y deux éléments permutables et symétrisables de E. Alors :
 - pour tous entiers n et m de \mathbb{Z} , $x^{(n)}$ et $y^{(m)}$ sont permutables;
 - pour tout entier $n \in \mathbb{Z}$, $x^{(n)} * y^{(n)} = (x * y)^{(n)}$.

• Éléments réguliers

Soit (E,*) un magma. Un élément a de E est dit régulier (ou simplifiable) à gauche (respectivement à droite) si :

$$\forall (x,y) \in E^2, \ a*x = a*y \implies x = y \text{ (respectivement } x*a = y*a \implies x = y).$$

Un élément a de E est dit régulier s'il est à la fois régulier à gauche et à droite. Soit (E,*) un magma associatif et unifère. Si un élément a de E est symétrisable, (à droite, à gauche), alors il est régulier (à droite, à gauche).

 \checkmark La réciproque de cette proposition est fausse en général. Par exemple, dans (\mathbb{Z},\times) , 2 est régulier mais non symétrisable.

[S1.2] Morphismes de magmas

• Soient (E,*) et (F,\square) deux magmas.

On dit qu'une application $f \colon E \to F$ est un morphisme de (E,*) dans (F,\square) si :

$$\forall (x,y) \in E^2, f(x*y) = f(x) \Box f(y).$$

Un isomorphisme est un morphisme bijectif. Un endomorphisme est un morphisme de (E,*) dans lui-même. Un automorphisme est un endomorphisme bijectif.

Exemple : si (E,*) est un magma associatif unifère et si x est un élément symétrisable de E, l'application $n \mapsto x^{(n)}$ est un morphisme de $(\mathbb{Z},+)$ dans (E,*).

- Si f est un morphisme de (E,*) dans (F,\square) et si g un morphisme de (F,\square) dans (G,\triangle) , la composée $g\circ f$ est un morphisme de (E,*) dans (G,\triangle) .
- Si f est un isomorphisme de (E,*) dans (F,\square) , alors son application réciproque f^{-1} est un isomorphisme de (F,\square) dans (E,*).

Exemple: l'application $x \mapsto e^x$ est un isomorphisme de $(\mathbb{R},+)$ sur (\mathbb{R}_+^*,\times) .

• Transport de structure

Soit $f:(E,*)\to (F,\square)$ un morphisme de magmas.

- L'image f(E) de E par f est une partie stable de (F,\square) .
- Si * est commutative, alors \square est commutative dans le magma $(f(E),\square)$.
- Si * est associative, alors \square est associative dans le magma $(f(E),\square)$.
- Si e est l'élément neutre de (E,*), alors f(e) est l'élément neutre de (f(E),□).
- Si x est symétrisable dans (E,*), de symétrique x', alors f(x) est symétrisable dans $(f(E),\square)$, de symétrique f(x'), et on a alors, pour tout $n \in \mathbb{Z}$, $f(x^{(n)}) = (f(x))^{(n)}$.

[S1.3] Groupes

- On appelle groupe un magma (G,*) tel que :
 - (i) * est associative;
 - (ii) * possède un élément neutre (généralement noté e_G);
 - (iii) tout élément de G est symétrisable pour la loi \ast .

Le groupe est dit abélien (ou commutatif) si, de plus, la loi * est commutative.

Exemple : soit E un ensemble non vide. Alors l'ensemble $\mathfrak{S}(E)$ des *permutations* de E (c'est-à-dire l'ensemble des bijections de E dans E) est un groupe pour la loi \circ ; ce groupe n'est pas commutatif dès que $\operatorname{Card}(E) \geqslant 3$.

• Produit de groupes

Soient $(G, *_G)$ et $(H, *_H)$ deux groupes. On peut alors munir l'ensemble produit $G \times H$ de la loi \square définie par :

$$\forall (x_1, y_1), (x_2, y_2) \in (G \times H)^2, (x_1, y_1) \square (x_2, y_2) = (x_1 *_G x_2, y_1 *_H y_2).$$

Alors $(G\times H,\square)$ est un groupe, appelé groupe produit de G et H ; son élément neutre est $(e_G,e_H).$

On peut bien sûr étendre cette définition à un produit d'un nombre fini quelconque de groupes.

[S1.4] Sous-groupe

• Soit (G,*) un groupe. On dit qu'une partie H de G est un sous-groupe de G si (H,*) est encore un groupe.

Si H est un sous-groupe de G, alors :

- l'élément neutre de H est celui de G;
- si x est un élément de H, son symétrique dans H est le même que dans G.

• Caractérisation d'un sous-groupe

Soit (G,*) un groupe. Pour qu'une partie H de G soit un sous-groupe de G, il faut et il suffit que les trois conditions suivantes soient vérifiées :

- (i) $H \neq \emptyset$;
- (ii) H est stable par la loi *;
- (iii) pour tout élément x de H, son symétrique x^{-1} est dans H.

Ces trois conditions sont aussi équivalentes aux deux conditions suivantes :

- (i) $H \neq \emptyset$;
- (ii) $\forall (x,y) \in H^2, x * y^{-1} \in H.$

Lorsque la loi est notée additivement, cette dernière condition s'écrit : $\forall (x,y) \in H^2, x-y \in H.$

Exemples

- $-(\{-1,1\},\times)$ est un sous-groupe de (\mathbb{R}^*,\times) .
- L'ensemble \mathbb{U} des nombres complexes de module égal à 1 est un sous-groupe de (\mathbb{C}^*,\times) (il s'agit du *cercle unité*).
- Si n est un entier non nul, l'ensemble \mathbb{U}_n des racines n-ièmes de l'unité est un sous-groupe de (\mathbb{U},\times) .

• Théorème de Lagrange

Si G est un groupe fini, le cardinal de tout sous-groupe de G est un diviseur de $\operatorname{Card} G$.

• Intersection de sous-groupes

Soit (G,*) un groupe. L'intersection d'une famille $(H_i)_{i\in I}$ de sous-groupes de G est encore un sous-groupe de G.

✓ La réunion de sous-groupes de G n'est pas en général un sous-groupe de G. Plus précisément, si H et H' sont deux sous-groupes de G, $H \cup H'$ est encore un sous-groupe de G si et seulement si $H \subset H'$ ou $H' \subset H$.

• Sous-groupe engendré

• Soit (G,*) un groupe, et X une partie de G. L'intersection de tous les sous-groupes de G contenant X est un sous-groupe de G; c'est le plus petit sous-groupe de G contenant X (au sens de l'inclusion); on l'appelle sous-groupe engendré par X, et on le note $\operatorname{gr}(X)$.

. Si $X=\emptyset,$ gr $(\emptyset)=\{e_{_G}\}$. Sinon, gr(X) est exactement l'ensemble des éléments de la forme :

$$x_1 * x_2 * \cdots * x_n$$

où $n \in \mathbb{N}^*$ et où pour tout $i \in [1; n], x_i \in X$ ou $x_i^{-1} \in X$.

[S1.5] Morphismes de groupes

- Un morphisme de groupes est (tout simplement) un morphisme entre deux groupes (G,*) et (H,\square) .
 - On définit de la même façon qu'auparavant les notions d'iso-, d'endo- et d'auto-morphisme de groupes.

• Propriétés

- Soit f un morphisme d'un groupe G vers un groupe H. Alors :
 - $f(e_G) = e_H;$
 - $\forall x \in G, \forall n \in \mathbb{Z}, f(x^{(n)}) = (f(x))^{(n)}.$
- La composée de deux morphismes de groupes est un morphisme de groupes.
- Si f est un isomorphisme de groupes, il en est de même de f^{-1} .
- Si G est un groupe, l'ensemble $\operatorname{Aut}(G)$ des automorphismes de G est un groupe pour la loi \circ ; c'est un sous-groupe du groupe des permutations $(\mathfrak{S}(G), \circ)$.

• Images directe et réciproque d'un sous-groupe

- Soit f un morphisme d'un groupe (G,*) vers un groupe (H,\square) . Si G' est un sous-groupe de (G,*), son image f(G') est un sous-groupe de (H,\square) .
- Si H' est un sous-groupe de (H,\square) , son image réciproque par f, $f^{-1}(H')$, est un sous-groupe de (G,*).
- Si f est un morphisme d'un groupe (G,*) vers un groupe (H,\square) , on appelle :
 - image de f, notée $\operatorname{Im} f$, l'image de G par f, soit : $\operatorname{Im} f = \{f(x), x \in G\}$;
 - noyau de f, noté Ker f, l'image réciproque de $\{e_H\}$ par f, soit :

$$\operatorname{Ker} f = \{ x \in G \mid f(x) = e_{H} \}.$$

On alors les résultats suivants.

- Im f est un sous-groupe de H, et : f surjective \iff Im f = H.
- Ker f est un sous-groupe de G, et : f injective \iff Ker $f = \{e_G\}$.

• Exemples

- L'application « déterminant » est un morphisme du magma $(\mathcal{M}_n(\mathbb{K}),\times)$ dans le magma (\mathbb{R},\times) .
- C'est aussi un morphisme du groupe $(GL_n(\mathbb{K}),\times)$ dans le groupe (\mathbb{R}^*,\times) .
- C'est aussi un morphisme du groupe orthogonal $(\mathcal{O}_n(\mathbb{R}),\times)$ dans $(\{-1,1\},\times)$, sous-groupe de (\mathbb{R}^*,\times) .

Dans ce cas, son noyau est l'ensemble des matrices orthogonales de déterminant +1; c'est le groupe spécial orthogonal $\mathcal{O}_n^+(\mathbb{R})$.

[S1.6] Groupes monogènes et cycliques

• Sous-groupes de $(\mathbb{Z},+)$

Les sous-groupes de $(\mathbb{Z},+)$ sont exactement les ensembles $n\mathbb{Z}$ où $n\in\mathbb{N}$ (ensemble des multiples de n).

 $(n\mathbb{Z},+)$ est le sous-groupe de $(\mathbb{Z},+)$ engendré par n ou par -n.

• Le groupe $(\mathbb{Z}/n\mathbb{Z},+)$

. Congruences

Soit $n \in \mathbb{N}$. On dit que deux entiers $x, y \in \mathbb{Z}$ sont congrus modulo n, et l'on note $x \equiv y \pmod{n}$, s'il existe $k \in \mathbb{Z}$ tel que y = x + kn.

Cela équivaut à dire que x-y appartient à $n\mathbb{Z}$, ou que (lorsque $n \ge 1$), x et y ont le même reste dans la division euclidienne par n.

Il s'agit d'une relation d'équivalence sur \mathbb{Z} , compatible avec l'addition et la multiplication, c'est-à-dire que pour tous entiers $x,\,y,\,x',\,y'$:

$$x \equiv y \pmod{n}$$
 et $x' \equiv y' \pmod{n}$
 $\implies x + x' \equiv y + y' \pmod{n}$ et $xx' \equiv yy' \pmod{n}$.

En particulier, pour tout $(x,y) \in \mathbb{Z}^2$ et tout entier naturel $k \in \mathbb{N}$:

$$x \equiv y \pmod{n} \implies x^k \equiv y^k \pmod{n}$$
.

. La classe d'équivalence de x modulo n est l'ensemble des $y \in \mathbb{Z}$ congrus à x :

$$\overline{x} = \{ y \in \mathbb{Z} \mid x \equiv y \pmod{n} \} = \{ x \} + n \mathbb{Z}.$$

L'ensemble de toutes les classes d'équivalence modulo n se note $\mathbb{Z}/n\mathbb{Z}$.

Si n = 0, $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$; si n = 1, $\mathbb{Z}/\mathbb{Z} = \{\overline{0}\}$; sinon, pour $n \ge 2$ (ce que l'on supposera pour la suite),

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}.$$

. Addition dans $\mathbb{Z}/n\mathbb{Z}$

Elle est définie par :

$$\forall (\overline{x}, \overline{y}) \in (\mathbb{Z}/n\mathbb{Z})^2, \ \overline{x} + \overline{y} = \overline{x+y}.$$

Muni de cette loi, l'ensemble $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe abélien; l'application $\pi : \begin{cases} \mathbb{Z} & \longrightarrow \mathbb{Z}/n\mathbb{Z} \\ x & \longmapsto \overline{x} \end{cases}$ est alors un morphisme de groupes surjectif, dont le noyau est $n\mathbb{Z}$. π s'appelle la surjection canonique de \mathbb{Z} sur $\mathbb{Z}/n\mathbb{Z}$.

• Groupe monogène, cyclique

• Un groupe (G,*) est dit monogène s'il est engendré par un unique élément $a \in G$. Dans ce cas, en notant la loi multiplicativement :

$$G = \left\{ a^k, \, k \in \mathbb{Z} \right\}.$$

Un groupe est dit cyclique s'il est monogène et de cardinal fini.

- . Tout groupe monogène de cardinal infini est isomorphe à $(\mathbb{Z},+)$.
- . Si G est un groupe cyclique engendré par a et de cardinal $n\in\mathbb{N}^*,$ G est isomorphe au groupe $(\mathbb{Z}/n\mathbb{Z},+)$. De plus, on a alors : $a^n=e_G$.

• Générateurs d'un groupe cyclique

Soit $n\geqslant 2.$ Les générateurs du groupe $(\mathbb{Z}/n\mathbb{Z},+)$ sont les éléments \overline{k} où k est premier avec n.

Le nombre de ces générateurs, c'est-à-dire le nombre d'entiers de [0; n-1] premiers avec n se note $\varphi(n)$; φ s'appelle l'indicateur d'Euler.

Par isomorphisme, il en résulte que si (G,*) est un groupe cyclique engendré par a et de cardinal n, les générateurs de G sont exactement les éléments a^k où $k \in \mathbb{Z}$ est un entier premier avec n.

Exemple : l'ensemble \mathbb{U}_n des racines n^{es} de l'unité est un sous-groupe cyclique de (\mathbb{C}^*,\times) .

Ses générateurs sont les nombres complexes de la forme $e^{\frac{2ik\pi}{n}}$ avec $k \in [0; n-1]$ premier avec n. Ces nombres sont appelés les racines primitives n^{es} de l'unité.

[S1.7] Ordre d'un élément dans un groupe

• Un élément a d'un groupe (G,*) est dit d'ordre fini si le groupe engendré par a,

$$gr(a) = \left\{ a^k, \, k \in \mathbb{Z} \right\},\,$$

est de cardinal fini d. d s'appelle alors l'ordre de a.

Si a est d'ordre fini, l'ordre de a est le plus petit entier $n \in \mathbb{N}^*$ tel que $a^n = e_G$; plus précisément, si d est l'ordre de a:

$$a^n = e_G \iff n$$
 multiple de d .

- D'après le théorème de Lagrange, si (G,*) est un groupe fini de cardinal n, tout élément $a \in G$ est d'ordre fini et son ordre d divise le cardinal de G $(d \mid n)$. En particulier, pour tout $a \in G$, on a $a^n = e_G$.
- En regroupant alors les éléments du groupe $(\mathbb{Z}/n\mathbb{Z},+)$ selon leur ordre, on obtient la propriété suivante de l'indicateur d'Euler φ :

$$n = \sum_{d \text{ divise } n} \varphi(d).$$

[S1.8] Le groupe symétrique \mathfrak{S}_n

• Soit $n \in \mathbb{N}^*$. On appelle groupe symétrique d'ordre n, noté \mathfrak{S}_n , l'ensemble des permutations de l'ensemble [1; n].

 \mathfrak{S}_n est un groupe pour la loi \circ de composition des applications. C'est un groupe fini de cardinal n!, non commutatif dès que $n \geqslant 3$.