Chapitre 1

Notions de base

Sommaire

1	Noti	ons sur les ensembles	2
	1.1	Appartenance	2
	1.2	Inclusion, égalité	2
	1.3	Opérations élémentaires dans $\mathscr{P}(E)$	3
	1.4	Propriétés des opérations élémentaires	3
	1.5	Produit d'ensembles	6
2	Applications		7
	2.1	Définition et exemples d'applications	7
	2.2	Injectivité, surjectivité, bijectivité	Ç
	2.3	Image directe, image réciproque d'une partie	14
	2.4	Restriction, prolongement, application induite	15
	2.5	Fonction indicatrice d'une partie	16
3	Eléments de logique		18
	3.1	Généralités	18
	3.2	Propriétés des éléments d'un ensemble E	19
	3.3	Opérations élémentaires sur les assertions	19
	3.4	Comparaison des propriétés des éléments de E	20
	3.5	Propriétés de l'ensemble E	22
4	Stratégies de démonstration		23
	4.1	Quelques cas particuliers rencontrés	23
	4.2	Stratégies pour démontrer une propriété universelle	24
	4.3	Stratégies pour démontrer une propriété existentielle	24
	4.4	Stratégies pour démontrer une implication	25
5	How	то	29

Motivation

Ce premier chapitre a pour but de rappeler les opérations élémentaires sur les ensembles, ainsi que les notions d'applications, suites et équations. Ces notions de base seront utiles tout au long du cours : la théorie des ensembles sera notamment utilisée au chapitre suivant -Dénombrement- ainsi que dans tout le cours de probabilités. Les applications et les suites forment le socle sur lequel reposera toute l'Analyse de première et deuxième année -étude des fonctions réelles d'une variable, suites numériques, séries numériques, etc. Enfin, la notion d'équation est essentielle en mathématique, non seulement en Algèbre linéaire -systèmes d'équations linéaires- mais aussi en Algèbre- nombres complexes, polynômes- ou encore en Analyse -équations différentielles.

Vous l'avez compris : l'intitulé de ce chapitre ne présume en rien de la facilité d'appréhender puis d'assimiler ce chapitre! Bien au contraire, vous aurez certainement à revenir régulièrement sur ce chapitre tout au long de l'année.

Bonne lecture!

1 Notions sur les ensembles

Vous connaissez déjà tout (ou presque) du contenu de ce paragraphe. Il ne s'agit que de fixer les notations que nous utiliserons dans tout le cours.

1.1 Appartenance

Définition : On appelle **ensemble** une collection d'objets. Ces objets s'appellent les **éléments** de l'ensemble.

Notation : Si E est un ensemble et si x est élément de E, on note $x \in E$. On dit aussi que x appartient à E. Lorsque x n'est pas élément de E, on note $x \notin E$.

Un ensemble est caractérisé par la donnée de ses éléments. La manière la plus simple de définir un ensemble consiste à dresser la liste de ces éléments :

- le singleton $\{a\}$,
- la **paire** $\{a;b\}$,
- $-\{10,15,2\}$

Cependant, il n'est pas toujours possible de dresser la liste de tous les éléments :

- soit parce qu'il y a trop d'éléments : N, Z, Q, R, C sont des ensembles qui possèdent une infinité d'éléments.
- soit parce qu'il n'y en a pas! C'est le cas pour l'ensemble vide, noté ∅ qui a la particularité de ne posséder aucun élément.

1.2 Inclusion, égalité

Définition : Soient E, F deux ensembles.

- 1. On dit que E est inclus dans F si tout élément de E est élément de F. On note $E \subset F$.
- 2. On dit que E et F sont **égaux** si $E \subset F$ et $F \subset E$. On note E = F.

COMMENTAIRES: en clair, deux ensembles sont égaux s'ils ont les mêmes éléments.

```
Exemples: \{1,2,3\} \subset \{1,2,3,15\}, \{1,2,3\} = \{1,2,3,2\}.
```

Remarque : On ne change pas l'ensemble en modifiant l'ordre de ses éléments ou en les répétant.

Exercice: Que pouvez-vous dire de $A = \{1, 2, 3\}$ et $B = \{1, 2, 4, 5\}$?

Vocabulaire : Lorsque $E \subset F$, on dit que E est un sous-ensemble de F, ou bien que E est une partie de F.

Définition : Soit E un ensemble. L'ensemble dont les éléments sont les parties de E est noté $\mathscr{P}(E)$.

Remarque : Soit E un ensemble, alors $\emptyset \subset E$, $E \subset E$.

Soient E et F deux ensembles, alors $E \subset F$ se traduit par $E \in \mathscr{P}(F)$.

Soit a un objet et E un ensemble, alors $a \in E$ se traduit par $\{a\} \in \mathscr{P}(E)$ ou bien encore $\{a\} \subset E$.

Exercice: Soit $E = \emptyset$. Quel est $\mathscr{P}(E)$? Soit $E = \{1, 2, 3\}$, quel est l'ensemble des parties de E?

Exemples : Une manière très pratique pour définir une partie d'un ensemble E, consiste à sélectionner les éléments de E qui vérifient une propriété :

- $]-1,7] = \{x \in \mathbb{R} | -1 < x \le 7\}$
- $5.\mathbb{N} = \{n \in \mathbb{N} | 5 \text{ divise } n\}$

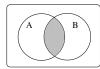
1.3 Opérations élémentaires dans $\mathscr{P}(E)$

Définition : Soient E un ensemble, $A, B \in \mathcal{P}(E)$, on définit

- 1. $A \cup B = \{x \in E | x \in A \text{ ou } x \in B\}$, la **réunion** de A et B.
- 2. $A \cap B = \{x \in E | x \in A \text{ et } x \in B\}$, l'intersection de A et B.
- 3. $C_E A = \{x \in E | x \notin A\}$, le complémentaire de A dans E.
- 4. $A \setminus B = \{x \in E | x \in A \text{ et } x \notin B\} = A \cap \mathcal{C}_E B$, la **différence** de A et B.

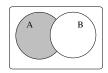
Illustration:

Les éléments de $A \cup B$ sont les éléments de E qui appartiennent à A ou à B



Les éléments de $A\cap B$ sont les éléments de E qui appartiennent à A et à B

Les éléments de $C_E A$ sont les éléments de Equi n'appartiennent pas à A



Les éléments de $A \setminus B$ sont les éléments de Equi appartiennent à Amais pas à B.

Vocabulaire: on dit que deux parties A et B sont disjointes lorsque $A \cap B = \emptyset$.

Remarques:

- 1. Pour toutes parties A et B de E, $A \subset A \cup B$ et $A \cap B \subset A$.
- 2. Dire que $x \in \mathcal{C}_E A$ signifie précisément $x \in E$ et $x \notin A!!$

Exercice: Déterminez $A \cup B$, $A \cap B$, $A \setminus B$, $\mathfrak{l}_{\mathbb{R}}A$, lorsque A et B sont les intervalles réels définis par :

$$A =]0, 2], \quad B = [1, 3].$$

1.4 Propriétés des opérations élémentaires

Les règles de calcul pour les opérations élémentaires entre parties sont simples à retenir :

Proposition 1.1.— Soient A, B deux parties d'un ensemble E.

1. $A \cup B = B \cup A$

- 3. $A \cap B = B \cap A$
- 2. $A \cup (B \cup C) = (A \cup B) \cup C$.
- 4. $A \cap (B \cap C) = (A \cap B) \cap C$.

¹ou décrire

Proposition 1.2.— Soient A, B, C des parties d'un ensemble E.

- 1. L'intersection est distributive sur la réunion : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 2. La réunion est distributive sur l'intersection : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Démonstration ∇

- 1. Soit x un élément de $A \cap (B \cup C)$. Par définition x est élément de A et de $B \cup C$. Deux cas sont possibles
 - soit x est élément de B, auquel cas, x appartient en fait à $A \cap B$,
 - soit x est élément de C, auquel cas x appartient en fait à $A \cap C$.

Dans tous les cas, x appartient à $(A \cap B) \cup (A \cap C)$.

Réciproquement si x est élément de $(A \cap B) \cup (A \cap C)$, là encore deux cas sont possibles :

- si x est élément de $A \cap B$, alors x appartient à A et à B,
- si x est élément de $A \cap C$, alors x appartient à A et à C.

Comme $B \subset B \cup C$ et $C \subset B \cup C$, il en résulte que dans tous les cas x appartient à $A \cap (B \cup C)$.

2. La preuve est tout à fait similaire :

Soit x un élément de $A \cup (B \cap C)$. Par définition, x est élément de A, ou x est élément de $B \cap C$:

- si x appartient à A, alors $x \in A \cup B$ et $x \in A \cup C$.
- si x appartient à $B \cap C$, alors $x \in B$ et $x \in C$. Par conséquent $x \in B \cup A$ et $x \in C \cup A$.

Dans tous les cas, x appartient à $(A \cup B) \cap (A \cup C)$.

Réciproquement, soit x un élément de $(A \cup B) \cap (A \cup C)$. Alors $x \in A \cup B$ et $x \in A \cup C$. Nous distinguons deux cas :

- si x appartient à A, alors x est a fortiori élément de $A \cup (B \cap C)$.
- si x n'appartient pas à A, comme x est élément de $A \cup B$, c'est donc que x appartient à B. De même, comme x est élément de $A \cup C$, mais pas de A, c'est qu'il appartient à C. Ainsi, x appartient à $B \cap C$.

Dans tous les cas, nous avons démontré que x est élément de $A \cup (B \cap C)$.

Intéressons-nous à présent aux propriétés du complémentaire. Par définition, pour toute partie $A \in \mathcal{P}(E)$,

$$A \cap C_E A = \emptyset$$
 et $A \cup C_E A = E$.

Ces deux propriétés caractérisent le complémentaire :

Proposition 1.3.— CARACTÉRISATION DU COMPLÉMENTAIRE

Soient A et B des parties d'un ensemble E,

$$B = \mathcal{C}_E A$$
 si et seulement si $A \cup B = E$ et $A \cap B = \emptyset$

COMMENTAIRES : intuitivement cela signifie que le complémentaire de A est la plus petite partie de E qu'il faut rajouter à A pour recouvrir E.

Démonstration ∇

• Supposons que $B = \mathcal{C}_E A$.

Montrons que $A \cap \mathcal{C}_E A$ est vide.

Supposons au contraire qu'il existe un élément x dans $A \cap C_E A$. En ce cas, x appartient à A et x n'appartient pas à A, ce qui est absurde. $A \cap C_E A$ ne peut donc contenir aucun élément, c'est l'ensemble vide.

Montrons que $E = A \cup C_E A$.

Il est clair que $A \cup C_E A \subset E$, il suffit donc de prouver que tout élément de E appartient à A ou à $C_E A$.

Soit donc x un élément de E, deux cas se présentent :

- si $x \in A$, c'est parfait!
- si $x \notin A$, alors par définition, x appartient à $\mathcal{C}_E A$.

Dans les deux cas, $x \in A \cup \mathcal{C}_E A$.

Conclusion: $E = A \cup C_E A$.

• Réciproquement, supposons que $A \cup B = E$ et $A \cap B = \emptyset$. On montre que $B = \mathbb{C}_E A$. Soit $x \in \mathbb{C}_E A$. Par définition, cela signifie que $x \in E$ et $x \notin A$. Puisque par hypothèse $E = A \cup B$ x appartient à A ou à B. Comme x n'appartient pas à A, il est nécessairement élément de B. Ceci prouve que $\mathcal{C}_E A \subset B$.

D'autre part, soit $x \in B$. Comme par hypothèse $A \cap B = \emptyset$, je suis sûr que x n'appartient pas à A. Mais c'est dire précisément que $x \in \mathcal{C}_E A$. Ainsi $B \subset \mathcal{C}_E A$.

Conclusion: si
$$A \cup B = E$$
 et $A \cap B = \emptyset$, alors $B = \mathcal{C}_E A$.

Cette caractérisation permet d'obtenir facilement les propriétés suivantes :

Corollaire 1.4.— Soient A, B deux parties d'un ensemble E, alors

- 1. $B = \mathcal{C}_E A$ si et seulement si $A = \mathcal{C}_E B$.
- 2. $C_E C_E A = A$

L'opération "passage au complémentaire" se comporte bien vis-à-vis des deux autres opérations :

Proposition 1.5.— Propriétés du passage au complémentaire² Soient A, B deux parties d'un ensemble E, alors :

- 1. $C_E(A \cup B) = (C_E A) \cap (C_E B)$.
- 2. $C_E(A \cap B) = (C_E A) \cup (C_E B)$.

Retenez que :

- le complémentaire d'une réunion est l'intersection des complémentaires,
- le complémentaire d'une intersection est la réunion des complémentaires.

Démonstration ∇

1. Pour démontrer que $C = (\mathbb{C}_E A) \cap (\mathbb{C}_E B)$ est le complémentaire de $A \cup B$ dans E, nous utilisons la caractérisation ci-dessus. Il nous suffit de démontrer que $C \cup (A \cup B) = E$ et $C \cap (A \cup B) = \emptyset$. Ces calculs reposent sur les propriétés d'associativité et de distributivité rappelées plus haut.

$$C \cup (A \cup B) = (A \cup C) \cup (B \cup C)$$

$$= (A \cup (\mathbb{C}_E A \cap \mathbb{C}_E B)) \cup (B \cup (\mathbb{C}_E A \cap \mathbb{C}_E B))$$

$$= ((A \cup \mathbb{C}_E A) \cap (A \cup \mathbb{C}_E B)) \cup ((B \cup \mathbb{C}_E A) \cap (B \cup \mathbb{C}_E B))$$

$$= (A \cup \mathbb{C}_E B) \cup (B \cup \mathbb{C}_E A)$$

$$= (A \cup \mathbb{C}_E A) \cup (B \cup \mathbb{C}_E B)$$

$$= E$$

$$C \cap (A \cup B) = (A \cap C) \cup (B \cap C)$$

$$= (A \cap (\mathbb{C}_E A \cap \mathbb{C}_E B)) \cup (B \cap (\mathbb{C}_E A \cap \mathbb{C}_E B))$$

$$= ((A \cap \mathbb{C}_E A) \cap \mathbb{C}_E B) \cup ((B \cap \mathbb{C}_E B) \cap \mathbb{C}_E A)$$

$$= \emptyset$$

- 2. Pour démontrer que $D = \mathcal{C}_E A \cup \mathcal{C}_E B$ est le complémentaire de $A \cap B$ dans E, on est amené à des calculs tout à fait analogues aux précédents.
- 3. Supposons que A soit inclus dans B. Il existe alors une partie D de E telle que $B=A\cup D$. Appliquons le 1. Il vient :

$$C_E B = C_E (A \cup D) = C_E A \cap C_E D \subset C_E A.$$

²Ces propriétés sont aussi appelées Lois de Morgan

1.5 Produit d'ensembles

Définition : Soient x et y deux objets. On appelle **couple** (x,y) la suite formée de deux objets dont le premier est x et le second est y.

Warning: Ne confondez pas le couple (x, y) avec la paire $\{x, y\}$, c'est tout à fait différent.

Retenez que :

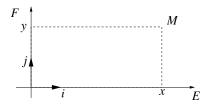
$$(x,y) = (x',y')$$
 si et seulement si $x = x'$ et $y = y'$.

Définition : Soient E, F deux ensembles, le **produit cartésien** de E et F est l'ensemble, noté $E \times F$ dont les éléments sont les couples (x, y), $x \in E$, $y \in F$.

$$E \times F = \{(x, y) | x \in E, y \in F\}.$$

Exemple: Formons le produit cartésien $\mathbb{R} \times \mathbb{R}$. Les éléments de ce produit sont les couples (x,y) de nombres réels. On peut se représenter cet ensemble de la manière suivante : munissons le plan \mathcal{P} d'un repère (O,i,j) et associons à tout couple $(x,y) \in \mathbb{R} \times \mathbb{R}$ le point $M \in \mathcal{P}$ de coordonnées (x,y). Ceci nous permet d'identifier $\mathbb{R} \times \mathbb{R}$ au plan \mathcal{P} .

Illustration:



Remarque : Servez-vous de l'illustration précédente pour représenter tout produit d'ensembles.

Proposition 1.6.— Propriétés du produit cartésien

- 1. $E \times F = \emptyset$ si et seulement si $E = \emptyset$ ou $F = \emptyset$.
- 2. $(E \times F) \cup (E \times G) = E \times (F \cup G)$.
- 3. $(E \times F) \cup (G \times F) = (E \cup G) \times F$.
- 4. $(E \times F) \cap (G \times H) = (E \cap G) \times (F \cap H)$.

Généralisation

Définition : Soit n un entier naturel, $n \geq 2$. Etant donnés E_1, E_2, \ldots, E_n n ensembles, on définit le **produit cartésien** $E_1 \times E_2 \times \cdots \times E_n$ par :

$$E_1 \times E_2 \times \cdots \times E_n = \{(x_1, x_2, \dots, x_n) | x_1 \in E_1, x_2 \in E_2, \dots, x_n \in E_n \}.$$

La liste ordonnée (x_1, x_2, \ldots, x_n) s'appelle un **n-uplet**.

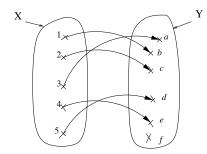
2. APPLICATIONS 7

2 Applications

2.1 Définition et exemples d'applications

Intuitivement, une application $f:E\to F$ est un procédé qui à tout élément de l'ensemble de départ E associe sans ambiguïté un unique élément de F. On peut se figurer ce procédé sous la forme d'un diagramme sagittal :

ILLUSTRATION:

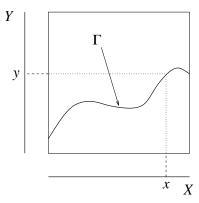


Définition : Soient X, Y deux ensembles et Γ une partie de $X \times Y$. On dit que Γ est le graphe d'une application g si :

Pour tout élément $x \in X$, il existe un unique élément $y \in Y$ tel que le couple (x, y) appartienne à Γ .

En d'autres termes, à tout élément x de X, " Γ " permet d'associer un unique élément y de Y. Cet élément est appelé **image** de x par g. On le note g(x).

Illustration:



En pratique : on ne décrit pas le graphe d'une application, au contraire on insiste sur le $\operatorname{proc\acute{e}d\acute{e}}$ qui à x associe son image. C'est pour cela qu'une application g de X vers Y est notée :

$$g: X \to Y \\ x \mapsto g(x)$$

Vocabulaire : Soit $g: X \to Y$ une application. Alors

- 1. X est appelé l'ensemble de départ, Y l'ensemble d'arrivée,
- 2. $\Gamma_g = \{(x,y) \in X \times Y | y = g(x)\}$ est appelé le **graphe** de g,
- 3. Pour tout $x \in X$, l'élément y = g(x) de Y est appelé **image** de x par g.
- 4. Pour tout $y \in Y$, un élément $x \in X$ tel que y = g(x) est appelé un **antécédent** de y par g.

Exemples: Soient E et F deux ensembles.

1. L'application **identité** de E dans lui-même est définie par $Id_E: E \rightarrow E$

- 2. Si $A \subset E$, l'**injection canonique** de A dans E est définie par $i_A: A \to E$ $x \mapsto x$
- 3. La **projection canonique** de $E \times F$ sur F est définie par $p_F: E \times F \to F$ $(x,y) \mapsto y$
- 4. Si $A \in \mathscr{P}(E)$, la fonction **indicatrice** de A est l'application de E vers $\{0,1\}$ qui à tout élément x de E associe $\mathbb{I}_A(x) = \begin{cases} 1 & si \ x \in A \\ 0 & si \ x \notin A \end{cases}$.

Les exemples ci-dessus sont des applications très générales définies pour tous ensembles E et F. Dans le cas particulier des applications de \mathbb{R} dans \mathbb{R} , citons par exemple :

- 1. la fonction carrée $q: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$
- 2. les fonctions polynomiales $p: \mathbb{R} \to \mathbb{R}$, $x \mapsto 7x^3 2x + 2$
- 3. la fonction racine carrée $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$, $x \mapsto \sqrt{x}$,
- 4. la fonction exponentielle exp : $\mathbb{R} \longrightarrow \mathbb{R}^{+\star}$ $x \mapsto e^x$

Le procédé $x\mapsto \frac{2x+3}{x-3}$ ne définit pas une application de $\mathbb R$ dans lui-même³.

Notation : Soient E, F deux ensembles. L'ensemble des applications de E vers F est noté $\mathscr{F}(E,F)$, ou bien F^E .

Définition : Deux applications $f, g : E \to F$ sont dites **égales**, et on note f = g lorsque $\Gamma_f = \Gamma_g$. Ceci se traduit par :

Pour tout élément
$$x \in E$$
, $f(x) = g(x)$

Composée d'applications

Proposition 1.7.— Soient $f: X \to Y, g: Y \to Z$ deux applications. On définit pour tout $x \in X$,

$$(g \circ f)(x) = g(f(x))$$

Le procédé de X vers Z défini par $(x \in X) \mapsto (g \circ f)(x)$ est une application, appelée la **composée** de f et g.

Démonstration ∇

- Soit $x \in X$ alors $f(x) \in Y$ puisque $X \xrightarrow{f} Y$. Comme $g: Y \to Z$ est définie sur Y, g(f(x)) est bien défini et appartient à Z. Tout élément x a bien (au moins) une image par $g \circ f$.
- Montrons que cette image est unique :

Soit $x \in X$ et $(z, z') \in Z^2$, tels que $g \circ f(x) = z$ et $g \circ f(x) = z'$. Posons $y = f(x) \in Y$: il vient g(y) = z et g(y) = z'. Comme g est une application, ceci implique que z = z'.

Attention : pour que la composée de deux applications ait un sens, il est nécessaire que l'ensemble d'arrivée de la première soit contenu dans l'ensemble de départ de la deuxième!

 $\pmb{Exemple}$: Soient f et g les applications définies par :

L'application $f \circ g$ est bien définie et pour tout $y \in \mathbb{R}^{+\star}$, $(f \circ g)(y) = 1 + (\ln y)^3$. En revanche, $g \circ f$ n'est pas définie.

³pourquoi?