Chapitre 1 Nombres complexes

Les nombres complexes sont apparus en Italie au XVIe siècle.
Niccolo **Tartaglia** le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme **Cardan** qui la publie en 1545 dans son ouvrage *Ars Magna*. Cependant, certaines racines réelles échappaient à cette formule. En 1560, Rafaele **Bombelli** s'aperçoit qu'on les retrouve si l'on conserve des racines de nombres négatifs qui se simplifient en fin de calcul. Cela le conduit à introduire les nombres complexes dont il donne explicitement les règles de calculs. Cependant, ces nouveaux nombres, nommés imaginaires par René **Descartes** en 1637, peinent à se faire admettre. Leonhard **Euler** les utilise abondamment et ose, en 1749, cette définition :

Jérôme Cardan 1501-1576

On nomme quantité imaginaire celle qui n'est ni plus grande que zéro, ni plus petite que zéro, ni plus égale à zéro ; ce sera quelque chose d'impossible comme $\sqrt{-1}$. Au début du siècle suivant, Carl Friedrich **Gauss** donne une construction effective de ces nombres et précise les opérations d'addition et de multiplication. On les dénomme alors nombres complexes, c'est-à-dire composés de deux nombres, les parties réelle et imaginaire.

Objectifs

■ Les incontournables

- - pour simplifier une expression complexe;
 - pour déterminer si un nombre complexe est réel.
- ▷ Utiliser les nombres complexes en trigonométrie :
 - pour linéariser une expression trigonométrique ;
 - pour établir une formule trigonométrique.
- > Savoir résoudre une équation polynomiale, notamment :
 - déterminer les racines *n*-ièmes d'un nombre complexe ;
 - calculer les racines carrées d'un nombre complexe, présenté sous forme algébrique ou exponentielle ;
 - résoudre les équations polynomiales de degré 2.

Résumé de cours

■ Notation algébrique des nombres complexes

Présentation de C

Définition : On appelle nombre complexe toute quantité de la forme a+ib, où $(a,b) \in \mathbb{R}^2$ et où i est un nombre complexe tel que $i^2 = -1$.

a est la partie réelle de z et b est la partie imaginaire et on note $a = \Re \mathfrak{c}(z)$ et $b = \Im \mathfrak{m}(z)$.

Vocabulaire : Si la partie réelle de z est nulle, on dit que z est imaginaire pur.

Théorème 1.1.— Unicité de l'écriture d'un nombre complexe en notation algébrique —. Pour tout couple $(z, z') \in \mathbf{C}^2$ de nombres complexes,

$$z = z' \iff \begin{cases} \Re e z = \Re e z' \\ \Im m z = \Im m z' \end{cases}$$

On note \mathbf{C}^* l'ensemble des nombres complexes non nuls.

Conjugué et module d'un nombre complexe

Définition : Le conjugué du nombre complexe z = a + ib, où $(a,b) \in \mathbb{R}^2$ est $\bar{z} = a - ib$.

Le conjugué vérifie les différentes propriétés suivantes.

Proposition 1.2.— Soit $(z, z') \in \mathbf{C}^2$ un couple de nombres complexes. Alors :

- $\blacksquare \Re (z) = \frac{1}{2}(z + \bar{z});$
- $\overline{z+z'} = \overline{z} + \overline{z'}$; $\overline{z} = z$; $\overline{z} = z$; $\overline{z} = z$; $\overline{z} = z$;
- $\blacksquare \ \mathfrak{Im}(z) = \frac{1}{2i}(z \bar{z}).$

Corollaire 1.3.— Caractérisation des nombres réels, imaginaires purs —. Soit $z \in C$ un nombre complexe. Alors:

- $\blacksquare z \text{ est r\'eel} \Leftrightarrow \mathfrak{Im}(z) = 0 \Leftrightarrow z = \bar{z};$
- \blacksquare z est imaginaire pur $\Leftrightarrow \Re \mathfrak{e}(z) = 0 \Leftrightarrow z = -\bar{z}$.

Définition : Le module du nombre complexe z = a + ib, où $(a,b) \in \mathbb{R}^2$ est le réel positif ou nul défini par $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$.

Remarque : soit $z \in \mathbf{C}$, on a l'encadrement $\max\{|\Re \mathfrak{e}\,z|, |\Im \mathfrak{m}\,z|\} \leq |z| \leq |\Re \mathfrak{e}\,z| + |\Im \mathfrak{m}\,z|$.

Proposition 1.4.— Propriétés du module —. Pour tout couple (z, z') de nombres complexes,

- $\blacksquare |z.z'| = |z| |z'|;$
- |z/z'| = |z|/|z'|;
- $|z + z'| \le |z| + |z'|$;
- $|z-z'| \ge ||z|-|z'||.$

Remarque: |z+z'|=|z|+|z|' si, et seulement si, il existe un réel $\lambda>0$ tel que $z'=\lambda z$.

Plan complexe

Le plan complexe \mathscr{P} est le plan muni d'un repère orthonormal direct $\mathcal{R} = (O, \vec{i}, \vec{j})$. À tout nombre complexe z = x + iy, où $(x, y) \in \mathbb{R}^2$, on associe le point M de \mathscr{P} tel que $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$. On dit que M est l'image du complexe z et que z est l'affixe du point M. On peut associer aussi à zle vecteur $\vec{u} = x\vec{\imath} + y\vec{\jmath}$. On dit que z est l'affixe du vecteur \vec{u} .

■ Nombres complexes de module 1

On note ${\bf U}$ l'ensemble des nombres complexes de module 1.

Exponentielle imaginaire pure

Définition: Soit $\theta \in \mathbb{R}$, on appelle exponentielle imaginaire d'angle θ , et on note $e^{i\theta}$ le $complexe e^{i\theta} = \cos(\theta) + i\sin(\theta).$

Proposition 1.5.— Représentation des nombres complexes de module 1 —. Pour tout nombre complexe $z \in \mathbf{U}$, il existe $\theta \in \mathbf{R}$, unique à 2π -près, tel que $z = e^{i\theta}$.

Théorème 1.6.— Règles de calcul pour l'exponentielle imaginaire —. Soit $(\theta, \theta') \in \mathbb{R}^2$, alors :

$$\blacksquare e^{-i\theta} = 1/e^{i\theta} = \overline{e^{i\theta}}$$

$$\bullet e^{i(\theta+\theta')} = e^{i\theta} \times e^{i\theta'} ;$$

$$\bullet e^{i(\theta-\theta')} = e^{i\theta}/e^{i\theta'}.$$

Formules d'Euler et Moivre

Théorème 1.7.— Pour tout réel $\theta \in \mathbf{R}$ et tout entier relatif $n \in \mathbf{Z}$,

■ Euler:
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$;

■ Moivre: $(e^{i\theta})^n = e^{in\theta}$, soit $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

Applications à la trigonométrie

Lemme 1.8.— Factorisation d'une somme d'exponentielles —. Soit $(\theta_1, \theta_2) \in \mathbb{R}^2$, alors

$$\blacksquare e^{i\theta_1} + e^{i\theta_2} = 2\cos\left(\frac{\theta_1 - \theta_2}{2}\right) \ e^{i\frac{\theta_1 + \theta_2}{2}} \qquad \blacksquare e^{i\theta_1} - e^{i\theta_2} = 2i\sin\left(\frac{\theta_1 - \theta_2}{2}\right) \ e^{i\frac{\theta_1 + \theta_2}{2}}.$$

On déduit de ces propriétés, les formules de trigonométrie rappelées à la fin du résumé de cours.

■ Notation exponentielle des nombres complexes

Proposition 1.9.— Soit $z \in \mathbf{C}^*$ un nombre complexe non nul. Il **existe** un couple de réels $(\rho, \theta) \in$ $\mathbf{R}_{+}^{*} \times \mathbf{R} \text{ tel que } z = \rho e^{i\theta} = \rho(\cos\theta + i\sin\theta).$

Cette écriture est appelée forme exponentielle ou trigonométrique de z.

Définition : $Si \ z \in \mathbf{C}^*$ s'écrit $z = \rho e^{i\theta}$, alors nécessairement $\rho = |z|$. On appelle **un argument** de z, et on note Arg(z) tout nombre réel tel que $z = |z|e^{i Arg(z)}$.

Interprétation : soit M l'image dans le plan complexe d'un complexe non nul $z = \rho e^{i\theta}$. Alors $\rho = |z|$ est la longueur du vecteur \overrightarrow{OM} et θ est une mesure modulo 2π de l'angle orienté $(\vec{i}, \overrightarrow{OM})$. Il n'y a donc pas unicité de l'écriture exponentielle.

Théorème 1.10.— Défaut d'unicité de l'écriture en notation exponentielle —. Pour tout couple $(z, z') \in \mathbb{C}^* \times \mathbb{C}^*$ de nombres complexes non nuls :

$$z = z' \iff \begin{cases} |z| = |z'| \\ \mathcal{A}rg(z) \equiv \mathcal{A}rg(z')[2\pi] \end{cases}$$

Notation : dans l'énoncé ci-dessus, on a noté $\theta_1 \equiv \theta_2[2\pi]$ la relation $\exists k \in \mathbf{Z}, \ \theta_2 = \theta_1 + 2 \ k\pi$.

Proposition 1.11.— Propriétés des arguments —. Soit $(z, z') \in \mathbb{C}^* \times \mathbb{C}^*$ et $n \in \mathbb{Z}$. Alors

$$\blacksquare \mathcal{A}rg(z.z') \equiv \mathcal{A}rg(z) + \mathcal{A}rg(z') [2\pi] ; \quad \blacksquare \mathcal{A}rg(z/z') \equiv \mathcal{A}rg(z) - \mathcal{A}rg(z') [2\pi] ;$$

■
$$Arg(\bar{z}) \equiv -Arg(z) [2\pi]$$
;
■ $Arg(z^n) \equiv n Arg(z) [2\pi]$.

Fonction exponentielle complexe

Définition : Soit z = x + iy en notation algébrique. On définit l'**exponentielle de** z par :

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

On appelle fonction exponentielle complexe la fonction : $\mathbf{C} \to \mathbf{C}$, $z \mapsto e^z$.

Les règles de calcul pour les fonctions exponentielles réelle et imaginaire pure, s'étendent à la fonction exponentielle complexe. On a notamment $\forall (z, z') \in \mathbf{C}^2, \, e^z e^{z'} = e^{z+z'}$.

\blacksquare Racines $n^{\text{ièmes}}$ d'un complexe

Définition : On appelle racine $n^{i\grave{e}me}$ de l'unité tout complexe z vérifiant $z^n=1$. L'ensemble des racines $n^{i\grave{e}mes}$ de l'unité est noté \mathbf{U}_n .

Théorème 1.12.— Soit $n \in \mathbb{N}$, $n \ge 1$. Notons pour $k \in \mathbb{Z}$, $z_k = \exp\left(\frac{2ik\pi}{n}\right)$. Alors

$$\mathbf{U}_n = \{z_k; \ k \in \mathbf{Z}\} = \{z_0, z_1, \dots, z_{n-1}\}\$$

Exemples : $\mathbf{U}_1 = \{1\}, \ \mathbf{U}_2 = \{-1, \, 1\}, \ \mathbf{U}_3 = \{1, \, j, \, j^2\}, \ \mathbf{U}_4 = \{1, \, i, \, -1, \, -i\}, \ \text{où} \ j = e^{i\frac{2\pi}{3}}.$

Proposition 1.13.— Racines $n^{\text{ièmes}}$ d'un complexe non nul quelconque —. Pour tout nombre complexe $\omega \in \mathbf{C}^*$, il existe exactement n complexes z vérifiant $z^n = \omega$.

Si on pose $\omega = \rho e^{i\theta}$, avec $(\rho, \theta) \in \mathbf{R}_+^* \times \mathbf{R}$, il s'agit des complexes définis par :

$$\forall k \in [0, n-1], \ z_k(\omega) = \rho^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$$

Proposition 1.14.— Si
$$z \in U_n \setminus \{1\}$$
. Alors $1 + z + z^2 + ... + z^{n-1} = 0$.

■ Formulaire de trigonométrie

En utilisant les nombres complexes, on peut démontrer certaines formules de trigonométrie et retrouver les autres :

Proposition 1.15.— Formules d'addition et de duplication —

$$\bullet \sin(a+b) = \sin a \cos b + \cos a \sin b = \sin 2a = 2 \sin a \cos a$$

Proposition 1.16.— Produits en somme (linéarisation) —.

$$\blacksquare \cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$

$$\bullet \sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

En particulier, lorsque a = b, nous avons $\cos^2 a = \frac{1}{2} [1 + \cos 2a]$, $\sin^2 a = \frac{1}{2} [1 - \cos 2a]$.

Proposition 1.17.— Transformations de sommes en produits

$$\bullet \cos p + \cos q = 2\cos\frac{p-q}{2}\cos\frac{p+q}{2} \quad \bullet \sin p + \sin q = 2\cos\frac{p-q}{2}\sin\frac{p+q}{2}$$

Proposition 1.18.— Formules utilisant la tangente de l'angle moitié —. En posant $t = \tan\left(\frac{x}{2}\right)$ quand cette quantité existe, on peut écrire :

$$\cos(x) = \frac{1 - t^2}{1 + t^2}, \ \sin(x) = \frac{2t}{1 + t^2}, \ \tan(x) = \frac{2t}{1 - t^2}$$

Attention: Les deux premières formules permettent une paramètrisation du cercle unité privé de $\{-1\}$ que l'on explicitera dans le chapitre 4. Par ailleurs, ces formules seront aussi utiles pour trouver certaines primitives.

■ Étude d'une expression complexe

lacksquare Méthode 1.1.— Comment montrer qu'un complexe z est réel

- \blacktriangleright On peut (s'il est non nul) montrer ou écrire que son argument est un multiple de π .
- ▶ On peut aussi montrer ou écrire qu'il est égal à son conjugué.
- ▶ On peut aussi montrer que sa partie imaginaire est nulle.

Exemples : donnons deux exemples qui développent deux cheminements différents.

- Déterminons les valeurs de $n \in \mathbb{N}$ pour lesquelles le complexe $z_n = (1+i)^n$ soit réel. Comme z_n est sous forme d'une puissance n-ième, le mieux est de passer à la forme trigonométrique de 1+i. On écrit $1+i=\sqrt{2}e^{i\frac{\pi}{4}}$ et donc comme z_n est évidemment non nul, $\operatorname{Arg} z_n = n\operatorname{Arg}(1+i) = n\frac{\pi}{4}$ doit être un multiple de π c'est-à-dire que n doit être un multiple de 4.
- Soit $z \in \mathbf{C} \{-1\}$ et $Z = \frac{z-1}{z+1}$, on veut déterminer z de telle manière que Z soit réel. Pour cela, on écrit que Z est réel si et seulement si $Z = \bar{Z}$, relation qui s'écrit, de manière équivalente par $\frac{z-1}{z+1} = \frac{\bar{z}-1}{\bar{z}+1}$ c'est-à-dire : $z\bar{z} \bar{z} + z 1 = z\bar{z} z + \bar{z} 1 \Leftrightarrow \bar{z} = z$. Et on en déduit que Z est réel si et seulement si z est réel et différent de -1.

Mise en œuvre : exercice 1.2.

de façon immédiate

\square Méthode 1.2.— Comment montrer ou caractériser qu'un complexe z est imaginaire pur

- ▶ On peut montrer ou écrire que son argument est de la forme $\pi/2 + k\pi$, $k \in \mathbf{Z}$.
- \blacktriangleright On peut aussi montrer ou écrire qu'il est opposé à son conjugué.
- ▶ On peut aussi montrer que sa partie réelle est nulle.

Exemple : soit $z \in \mathbf{C} - \{-1\}$ et reprenons $Z = \frac{z-1}{z+1}$, on veut déterminer z de telle manière que Z soit imaginaire pur. Pour cela, on écrit que Z est imaginaire pur si et seulement si $Z = -\bar{Z}$, relation qui s'écrit $\frac{z-1}{z+1} = -\frac{\bar{z}-1}{\bar{z}+1}$ c'est-à-dire, $z\bar{z} - \bar{z} + z - 1 = -z\bar{z} + z - \bar{z} + 1 \Leftrightarrow z\bar{z} = 1$. Et on en déduit que Z est imaginaire pur si et seulement si z est élément de \mathbf{U} ($z \neq -1$).

Méthode 1.3.— Comment simplifier un complexe z écrit sous forme d'une puissance de complexes, du type Z^n , où $n \in \mathbb{N}$ et Z non nul Une méthode est d'écrire Z sous forme trigonométrique $Z = \rho e^{i\theta}$ et dans ce cas, on écrit,

NOMBRES COMPLEXES

 $z = \rho^n e^{in\theta}$

Exemple : on peut repartir de l'exemple précédent de la méthode 1.1 en écrivant immédiatement

$$z = (1+i)^n = (\sqrt{2})^n e^{in\pi/4}$$

Remarquons, au passage, que l'idée qui viendrait à certains d'utiliser la **formule du binôme de Newton** pour développer $(1+i)^n$, dans l'espoir de simplifier cette expression, est à sortir rapidement de leur esprit. Ici ce n'est absolument pas indiqué voire contre-indiqué. Par contre la **formule du binôme de Newton** peut aider à calculer certaines sommes. Ne résistons pas au plaisir de le faire, vous aurez ainsi une méthode gratuite en plus! Par exemple, comme

$$(1+i)^n = (\sqrt{2})^n e^{in\pi/4} = \sum_{k=0}^n \binom{n}{k} i^k,$$

en prenant séparément la partie réelle et la partie imaginaire, on a :

$$(\sqrt{2})^n \cos\left(n\frac{\pi}{4}\right) = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k, \ (\sqrt{2})^n \sin\left(n\frac{\pi}{4}\right) = \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k$$

Mise en œuvre : exercice 1.5.

$f \square$ Méthode 1.4.— Comment simplifier dans certains cas une expression complexe z écrite sous forme d'une somme

 \blacktriangleright Si z est une somme ou une différence de complexes conjugués, on remarque alors que

$$z = Z + \overline{Z} = 2\Re \mathfrak{e}(Z)$$
 ou $z = Z - \overline{Z} = 2i\Im \mathfrak{m}(Z)$.

▶ Si z est une somme de complexes de module 1, on écrit alors $((\alpha, \beta) \in \mathbb{R}^2)$,

$$z = e^{i\alpha} + e^{i\beta} = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} + e^{i\frac{-\alpha+\beta}{2}} \right) = 2e^{i\frac{\alpha+\beta}{2}} \cos\left(\frac{\alpha-\beta}{2}\right)$$

Exemple : si θ est fixé dans $[0, \pi]$, on considère

$$z = 1 + \cos\theta + i\sin\theta$$

et on écrit successivement

$$z = 1 + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{i\frac{-\theta}{2}} + e^{i\frac{\theta}{2}} \right) = 2e^{i\frac{\theta}{2}} \cos\left(\frac{\theta}{2}\right)$$

On remarque, en passant, que comme $\theta/2 \in [0, \pi/2]$, la forme obtenue de z est la forme trigonométrique (si z est non nul!).

$f \square$ Méthode 1.5.— Comment simplifier une expression complexe z écrite sous forme d'un quotient

- ightharpoonup On peut par exemple écrire sous forme trigonométrique le numérateur et le dénominateur de z et utiliser les règles sur le module et l'argument d'un quotient.
- ▶ On peut aussi multiplier à la fois le numérateur et le dénominateur par la quantité conjuguée du dénominateur.
- ▶ On peut combiner les deux méthodes précédentes.