PHYSIQUE-CHIMIE Résolution de problème

Durée: 3 heures

L'usage d'une calculatrice est autorisé pour cette épreuve.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Chaque candidat est responsable de la vérification de son sujet d'épreuve : pagination et impression de chaque page. Ce contrôle doit être fait en début d'épreuve. En cas de doute, il doit alerter au plus tôt le chef de centre qui vérifiera et éventuellement remplacera son sujet.

Cette épreuve est constituée de deux parties indépendantes comprenant, chacune, des études indépendantes. Des données utiles sont rassemblées à la fin du sujet.

LE DIOXYDE DE CARBONE

Partie I Le cycle du carbone : atmosphère, océan et énergie

Bien qu'il ne soit pas l'élément chimique le plus présent sur Terre, le carbone est l'un des composés les plus marquants dans le fonctionnement et l'évolution du système Terre. Un ensemble complexe de processus biogéochimiques permet son transfert d'un réservoir à un autre conduisant à un cycle planétaire du carbone. Ce dernier est partagé entre un cycle rapide, impliquant les réservoirs atmosphère, océan et biosphère, et un cycle lent, impliquant la croûte terrestre, les sols et l'océan. Le dioxyde de carbone étant un gaz à effet de serre, le cycle du carbone interagit très étroitement avec la machine climatique, aboutissant à la mise en place de boucles de rétroactions complexes qui régulent ou au contraire amplifient son fonctionnement. Ces boucles sont les éléments clés du fonctionnement du cycle. Ainsi, la concentration en dioxyde de carbone atmosphérique a été contrôlée tout au long de l'histoire de la Terre par l'érosion des continents combinée à la sédimentation océanique. Aujourd'hui, la compréhension des liens entre le réchauffement climatique et les émissions de dioxyde de carbone par les activités humaines passe par la modélisation de cette machinerie complexe.

A. Le dioxyde de carbone : un gaz à effet de serre

L'absorption par certains des constituants de l'atmosphère des rayonnements infrarouge émis par la surface de la planète permet de diminuer la dissipation de l'énergie thermique de la planète en direction de l'espace, ce qui a pour effet d'augmenter la température à la surface de la planète : c'est ce qu'on appelle l'effet de serre. En l'absence d'effet de serre, la température moyenne à la surface de la Terre serait inférieure d'environ 30°C à ce qu'elle est actuellement.

Pour jouer un rôle dans l'effet de serre, un gaz doit donc être capable d'absorber une certaine gamme de rayonnements infrarouge, ce qui est directement relié à la structure de la molécule qui constitue ce gaz et plus particulièrement à la géométrie de ses modes de vibration. Un mode de

vibration est actif en infrarouge, c'est-à-dire qu'il provoque l'absorption d'un rayonnement infrarouge, si le moment dipolaire de la molécule varie lors de la vibration. Dans le cas de la molécule CO₂, il existe 4 modes de vibration, les modes 5 et 6 étant en réalité des rotations de la molécule dans son entier (figure 1).

$\begin{array}{c} x \\ y \\ \end{array}$	Vibration d'élongation (selon l'axe z)	Vibration de déformation (dans le plan xz)	Vibration de déformation (dans le plan yz)
Symétrique	Mode 1	Mode 2	Mode 3
Antisymétrique	Mode 4	Mode 5 : rotation	Mode 6 : rotation

Figure 1 : Les modes de vibration de la molécule CO₂

- **A1.** Écrire la structure de Lewis de la molécule de dioxyde de carbone CO₂, en déduire la géométrie de la molécule CO₂ en utilisant la méthode VSEPR.
- **A2.** Le moment dipolaire individuel de chaque liaison CO est p = 2,30 D. Justifier l'existence et déterminer le sens de ce moment dipolaire de liaison, puis déterminer la valeur du moment dipolaire permanent de la molécule CO_2 , c'est-à-dire lorsqu'elle est au repos.
- **A3.** Parmi les 4 modes de vibration 1, 2, 3 et 4, déterminer lesquels sont actifs en infrarouge, c'est-à-dire lesquels entraînent une variation du moment dipolaire de la molécule.
- **A4.** En réalité, le spectre d'absorption infrarouge du dioxyde de carbone ne comporte que deux pics d'absorption. Proposer une explication à cette observation expérimentale.

B. Stockage du dioxyde de carbone dans les océans

Les océans recouvrent plus des deux tiers de la surface de la Terre ce qui leur permet d'être un réservoir de carbone important à l'échelle de la planète malgré la relativement faible solubilité du dioxyde de carbone dans l'eau.

La réaction (1) de dissolution du dioxyde de carbone dans l'eau a pour équation :

(1)
$$CO_{2(g)} \rightleftharpoons CO_{2(aq)}$$

Cette réaction a pour constante d'équilibre K°_{1} . La valeur de la constante K°_{1} a été déterminée pour différentes températures, les résultats sont rassemblés dans la figure 2.

- **B1.** La pression partielle en dioxyde de carbone dans l'atmosphère terrestre atteint aujourd'hui la valeur de 400 ppm, c'est-à-dire 400×10^{-6} bar. Déterminer l'expression puis donner la valeur de la concentration en $CO_{2(aq)}$ pour une pression partielle en dioxyde de carbone gazeux $P(CO_2) = 400\times10^{-6}$ bar et une température de 298 K.
- **B2.** Préciser qualitativement l'influence de la température sur l'équilibre (1). En déduire sans calcul le signe de l'enthalpie standard $\Delta_r H^\circ_1$ de la réaction (1). En utilisant ce résultat, expliquer quelles zones océaniques de la planète jouent le mieux le rôle de stockage du dioxyde de carbone, et préciser quel est l'effet de l'augmentation de la température moyenne de la planète sur l'efficacité de ce stockage.

Agro-Véto - Épreuve A 19

T (K)	K°ı	
278	6,31×10 ⁻²	
283	$5,37\times10^{-2}$	
288	$4,57\times10^{-2}$	
293	$3,89\times10^{-2}$	
298	$3,39\times10^{-2}$	
303	$2,89\times10^{-2}$	

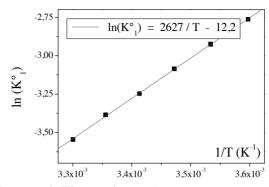


Figure 2 : Variation de K°_{l} avec la température

- **B3.** Déterminer la valeur numérique de l'enthalpie standard $\Delta_r H^o_1$ de la réaction (1). Commenter l'ordre de grandeur obtenu en expliquant quelles sont les interactions physicochimiques qui interviennent lors de la dissolution du dioxyde de carbone dans l'eau.
- **B4.** Préciser l'influence de la pression sur l'équilibre (1). En déduire quel est l'effet de l'augmentation de la pression partielle en dioxyde de carbone dans l'atmosphère terrestre sur la concentration en CO_{2(aq)} dans les océans.

Le dioxyde de carbone dissous dans l'eau est susceptible de s'hydrater en acide carbonique H₂CO₃ qui est un acide faible dans l'eau, selon les réactions d'équation (2) et (3) :

(2)
$$CO_{2 \text{ (aq)}} + H_2O_{\text{ (l)}} \implies H_2CO_{3 \text{ (aq)}}$$
 $K^{\circ}_2 = 1,70 \times 10^{-3} \text{ à } 298 \text{ K}$

(2)
$$CO_{2 \text{ (aq)}} + H_2O_{(1)} \rightleftharpoons H_2CO_{3 \text{ (aq)}}$$
 $K^{\circ}_2 = 1,70 \times 10^{-3} \text{ à } 298 \text{ K}$
(3) $H_2CO_{3 \text{ (aq)}} + H_2O_{(1)} \rightleftharpoons HCO_{3 \text{ (aq)}} + H_3O_{(aq)}^{+}$ $K^{\circ}_3 = 2,34 \times 10^{-4} \text{ à } 298 \text{ K}$

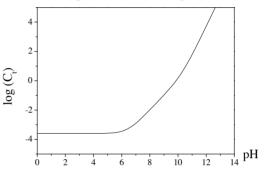
Les espèces CO_{2(aq)} et H₂CO_{3(aq)} étant très difficiles à distinguer expérimentalement, les deux équilibres (2) et (3) ne sont pas étudiés de manière individuelle. On rassemble généralement les deux équations des réactions (2) et (3) sous la forme d'une unique équation (4) :

(4)
$$CO_{2 \text{ (aq)}} + 2 H_2O_{\text{ (l)}} \implies HCO_{3 \text{ (aq)}} + H_3O_{\text{ (aq)}}^+ \qquad K_4^{\circ}$$

L'ion hydrogénocarbonate HCO₃ est lui-même un acide faible dans l'eau :

(5)
$$HCO_{3(aq)}^{-} + H_2O_{(1)} \rightleftharpoons CO_{3(aq)}^{2-} + H_3O_{(aq)}^{+} \qquad K_5^{\circ} = 5.01 \times 10^{-11} \text{ à } 298 \text{ K}$$

- **B5.** Donner l'expression de la constante K°₄ en fonction des constantes K°₂ et K°₃ puis déterminer la valeur numérique de la constante K°₄ à 298 K.
- **B6.** Tracer le diagramme de prédominance des espèces $CO_{2(aq)}$, $HCO_{3}^{-}{}_{(aq)}$ et $CO_{3}^{2-}{}_{(aq)}$ en fonction du pH de la solution.
- B7. Prévoir qualitativement l'effet de la dissolution du dioxyde de carbone sur le pH des eaux de surface océaniques.
- **B8**. Expliquer quelle espèce parmi $CO_{2(aq)}$, $HCO_{3(aq)}^{-}$ et $CO_{3(aq)}^{2-}$ est minoritaire lorsqu'on met du dioxyde de carbone gazeux en présence d'eau pure initialement neutre.
- **B9.** On considère de l'eau pure initialement neutre mise en contact avec une atmosphère contenant une pression partielle constante en dioxyde de carbone gazeux P(CO₂) à 298 K. En utilisant des approximations pertinentes, donner l'expression du pH de la solution en puis fonction de $P(CO_2)$ déterminer la valeur numérique $P(CO_2) = 400 \times 10^{-6} \text{ bar.}$


En réalité, l'eau des océans contient de nombreuses autres espèces chimiques dissoutes dont certaines possèdent des propriétés de tampon comme les dérivés de l'acide borique. Le pH des eaux océaniques est actuellement proche de 8,1 mais on estime que cette valeur est le résultat d'une diminution de 0,1 à 0,2 unité de pH depuis le début de l'ère industrielle.

Dans l'eau des océans, les espèces $CO_{2(aq)}$, $HCO_{3-(aq)}^{-}$ et $CO_{3-(aq)}^{2-}$ sont en équilibre permanent. La quantité totale de dioxyde de carbone dissous, appelée *quantité totale de carbone inorganique*, est la somme des concentrations molaires de ces trois espèces :

$$C_t = [CO_{2(aq)}] + [HCO_{3(aq)}] + [CO_{3(aq)}]$$

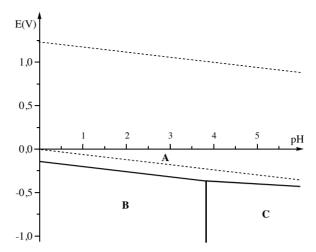
B10. Donner l'expression de la quantité totale de carbone inorganique C_t dans la solution en fonction de K°_1 , K°_4 , K°_5 , $P(CO_2)$ et de la concentration $[H_3O^+_{(aq)}]$ dans la solution. Puis interpréter la courbe représentant $log(C_t)$ en fonction du pH de la solution (figure 3).

Figure 3: Courbe $log(C_t) = f(pH)$, pour une pression partielle constante $P(CO_2) = 400 ppm$

- **B11.** Préciser dans quel domaine de pH la quantité de carbone inorganique total est la plus grande. En déduire quel est l'effet d'une diminution du pH des eaux de surface sur la capacité des océans à jouer le rôle de stockage du dioxyde de carbone.
- **B12.** En utilisant l'ensemble des résultats obtenus dans cette partie, expliquer pourquoi on parle de boucle de rétroaction complexe lorsqu'on étudie le stockage du dioxyde de carbone dans les océans.

C. Valorisation du dioxyde de carbone par électrolyse

La conversion chimique du dioxyde de carbone en matières premières carbonées constitue un enjeu très important pour notre société. En effet, un tel procédé permettrait de recycler le dioxyde de carbone en en faisant une source abondante et peu coûteuse de carbone. La principale difficulté de cette approche réside dans la très grande inertie chimique de cette molécule.


Une méthode efficace de valorisation du dioxyde de carbone est sa réduction électrochimique en acide méthanoïque HCOOH: l'électrolyse a lieu à température ambiante dans des cellules électrocatalytiques, l'énergie électrique étant fournie généralement à partir d'énergies renouvelables (panneaux solaires, barrage hydroélectrique).

Le diagramme potentiel-pH du dioxyde de carbone, représenté figure 4, a été tracé pour une concentration totale en élément carbone dissous $C=10^{-2}\,\mathrm{mol.L^{-1}}$ et une pression partielle pour les espèces gazeuses égale à 1 bar. Les espèces considérées sont le dioxyde de carbone $CO_{2\,(g)}$, l'acide méthanoïque $HCOOH_{(aq)}$ et l'ion méthanoate $HCOO^-_{(aq)}$. Les potentiels apparents des couples redox de l'eau sont représentés en pointillés.

- **C1.** Donner la structure électronique du carbone dans son état fondamental. En déduire quels sont les degrés d'oxydation minimum et maximum du carbone.
- **C2.** Classer les espèces suivantes par ordre de degré d'oxydation du carbone : CO₂, HCOOH, HCOO⁻, CH₄, CH₃OH, HCHO.

Agro-Véto - Épreuve A

Figure 4:
Diagramme potentiel-pH
des espèces $CO_{2(g)}$, $HCOOH_{(aq)}$ et $HCOO^{-}_{(aq)}$

- C3. Indiquer quelle espèce du carbone est stable ou prédominante dans chacun des domaines A, B, et C.
- **C4.** Écrire l'équation de la réaction thermodynamiquement attendue pour une solution aqueuse d'acide méthanoïque dont le pH vaut 2. En réalité, cette solution est stable à température ambiante, la réaction prévue ne se produisant qu'à partir de 160°C. Proposer une explication à cette observation expérimentale.

Dans une cellule électrocatalytique, le dioxyde de carbone, dissous dans un électrolyte, est réduit au niveau de la cathode pour former de l'acide méthanoïque HCOOH en se combinant aux protons produits au niveau de l'anode. Une membrane sépare le compartiment cathodique du compartiment anodique et permet le passage des cations comme les ions H⁺. L'électrolyte utilisé est un liquide ionique organique dans le compartiment cathodique, et une solution aqueuse dans le compartiment anodique.

C5. Écrire l'équation de la réaction électrochimique qui modélise la transformation du dioxyde de carbone en acide méthanoïque à la cathode. Sachant qu'il se forme du dioxygène dans le compartiment anodique, écrire la réaction électrochimique qui modélise la transformation de l'eau à l'anode. En déduire l'équation bilan de la réaction catalysée par la cellule électrocatalytique.

L'acide méthanoïque formé peut être ensuite à nouveau réduit en d'autres composés carbonés à plus haut potentiel énergétique comme le méthanol, ou directement utilisé dans une pile à combustible. La pile à combustible à acide méthanoïque permet de transformer l'acide méthanoïque et le dioxygène dissous dans la solution en dioxyde de carbone et en eau afin de produire de l'énergie électrique.

- **C6.** Faire un schéma de principe de la pile à combustible à acide méthanoïque en indiquant l'anode, la cathode, le pôle « plus », le pôle « moins » et le sens de circulation des électrons.
- **C7.** Donner l'équation bilan et déterminer la constante thermodynamique de la réaction qui se déroule dans la pile à combustible à acide méthanoïque à 298 K. Commenter l'ordre de grandeur obtenu.
- **C8.** Expliquer quel est l'intérêt de réduire par électrolyse le dioxyde de carbone en acide méthanoïque grâce à l'énergie électrique de panneaux solaires ou d'un barrage hydroélectrique pour ensuite utiliser l'acide méthanoïque dans une pile à combustible afin d'obtenir à nouveau de l'énergie électrique.

Partie II

Valorisation du dioxyde de carbone en tant que synthon C1

La production mondiale de polymères, communément appelés « matières plastiques », est un secteur économique et industriel majeur. Les matières premières utilisées pour la production des polymères sont presque exclusivement des dérivés d'origine fossile et représentent environ 7 % du pétrole et du gaz consommés chaque année dans le monde.

La synthèse de polymères utilisant le dioxyde de carbone comme matière première représente une voie originale qui s'inscrit dans une démarche de chimie durable : en raison de son faible coût et de sa faible toxicité, le dioxyde de carbone est en effet une source de carbone intéressante pour les procédés de synthèse industriels, d'autant plus qu'étant un composé gazeux il présente l'avantage d'être compatible avec de nombreux procédés de polymérisation existant. L'un des débouchés qui fait actuellement l'objet de nombreux travaux de recherche concerne l'utilisation du dioxyde de carbone en tant que réactif dans la synthèse des polycarbonates.

D. Synthèse des polycarbonates par la voie phosgène

Le principal polycarbonate commercial est le polycarbonate de bisphénol A. C'est une matière plastique transparente, résistante aux chocs et utilisable dans une large gamme de températures ce qui en fait un matériau de choix dans la fabrication de nombreux objets : verres de vue, fenêtres, CD et DVD, vitres de phares automobiles, etc.

La méthode la plus utilisée actuellement pour la fabrication du polycarbonate de bisphénol A est la polycondensation du bisphénol A et du phosgène COCl₂ en présence de soude (figure 5) : le procédé industriel fait réagir le sel disodique de bisphénol A avec le phosgène dissous dans un solvant organique chloré comme le dichlorométhane CH_2Cl_2 . Ce procédé comporte de nombreux inconvénients parmi lesquelles l'extrême toxicité du phosgène, l'utilisation de solvant à faible point d'ébullition et l'obtention d'une grande quantité d'eau usée contenant du dichlorométhane et du sel qui doit ensuite être traitée.

Figure 5 : Synthèse du polycarbonate de bisphénol A par la voie phosgène

La molécule de phosgène COCl₂ présente une réactivité chimique similaire à celles de la famille des chlorures d'acyle. De la même manière, les molécules qui comportent une fonction carbonate (de formule générale RO-COOR') présentent une réactivité chimique similaire à celles de la famille des esters.

- **D1.** En présence d'humidité et sous l'action de la chaleur, le phosgène COCl₂ s'hydrolyse en donnant du chlorure d'hydrogène et du dioxyde de carbone. Sachant que cette réaction en phase gazeuse est quantitative et rapide, en déduire quelles précautions particulières doivent être prises dans les zones de stockage du phosgène.
- **D2.** Comparer le caractère acide du bisphénol A et d'un alcool aliphatique comme l'éthanol. Justifier le choix de la base utilisée pour déprotoner le bisphénol A.
- **D3.** Écrire le mécanisme de la réaction d'une molécule de bisphénol A avec une molécule de phosgène dans les conditions expérimentales décrites ici.

Agro-Véto - Épreuve A 23

D4. Un des produits de la réaction précédente peut réagir avec un deuxième équivalent de bisphénol A. Écrire l'équation de cette réaction et donner la structure du produit obtenu. En déduire une condition sur la structure de l'alcool pour que la réaction entre un alcool et le phosgène conduise effectivement à la synthèse d'un polymère.

La réaction de polymérisation peut être suivie en réalisant des spectres d'absorption infrarouge et RMN¹H du milieu réactionnel.

D5. Interpréter le spectre RMN¹H du bisphénol A (figure 6a) : vous pourrez présenter vos résultats sous la forme d'un tableau précisant pour chaque signal l'intégration, la multiplicité attendue et le déplacement chimique observé.

D6. Préciser quelles sont les différences majeures entre les spectres RMN¹H et d'absorption infrarouge du bisphénol A (figures 6a et 6b) et du polymère qui permettent de suivre l'avancement de la réaction de polymérisation.

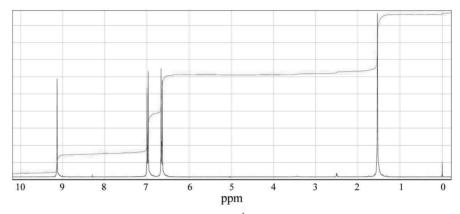


Figure 6a : Spectre RMN¹H du bisphénol A

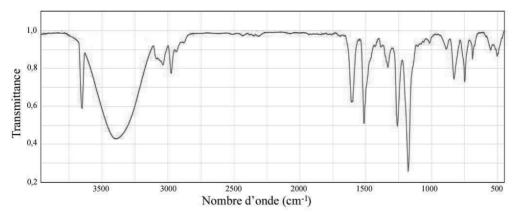


Figure 6b : Spectre d'absorption infrarouge du bisphénol A

E. Synthèse de polycarbonates par copolymérisation du dioxyde de carbone avec les époxydes

L'utilisation du dioxyde de carbone comme réactif dans la synthèse des polycarbonates fournit une alternative plus économique et moins toxique à l'utilisation du phosgène, de plus cette voie de synthèse est susceptible de valoriser des quantités importantes de dioxyde de carbone.

La copolymérisation du dioxyde de carbone avec les époxydes se déroule selon un mécanisme de coordination-insertion qui met généralement en œuvre un catalyseur de type complexe organométallique (LM-X) jouant le rôle d'un acide de Lewis (figure 7).

Figure 7 : Synthèse d'un polycarbonate par copolymérisation époxyde-CO₂

- **E1.** Un milieu acide provoque la dissociation du complexe salen-Cr-Cl. En déduire la structure du ligand salenH₂ et expliquer l'influence du pH sur l'équilibre de complexation.
- **E2.** Sachant que le complexe salen-Cr-Cl est neutre, déterminer le degré d'oxydation du chrome dans le complexe. Donner la configuration électronique de l'ion du chrome correspondant, en déduire pourquoi il est dit que le complexe joue le rôle d'un acide de Lewis dans le mécanisme de polymérisation.

La formation du polymère est généralement accompagnée de la production de carbonate cyclique à cinq centres. Les catalyseurs mis en œuvre pour la copolymérisation époxyde-CO₂ sont essentiels à la fois pour contrôler la sélectivité de la réaction (selon le catalyseur utilisé, la proportion de carbonate cyclique fabriqué peut varier de 1 à 99%) et pour limiter les réactions parasites afin d'obtenir des polymères de masse molaire élevée. Le mécanisme de copolymérisation époxyde-CO₂ est représenté figure 8.

La réactivité du catalyseur LM-X et des intermédiaires de type LM-OR est analogue à la réactivité d'un organomagnésien mixte. Par exemple, le mécanisme de la première étape de l'amorçage (figure 8, action de LM-X sur l'oxirane) est analogue à celui de l'action d'un organomagnésien sur l'oxirane.

- E3. Proposer une méthode permettant de fabriquer l'oxirane à partir de l'éthylène.
- **E4.** Donner le mécanisme d'action du bromure de méthylmagnésium sur l'oxirane, et préciser la structure du produit obtenu avant hydrolyse.
- **E5.** Proposer un mécanisme pour la deuxième étape de l'amorçage (figure 8, action de LM-OCH₂CH₂-X sur le dioxyde de carbone).
- **E6.** Proposer un mécanisme pour la réaction parasite (figure 8, action de LM-OCH₂CH₂-R sur un composé protique R'OH).
- **E7.** Expliquer quelle conséquence la réaction parasite a sur la longueur de chaîne du polymère (c'est-à-dire le nombre n d'unités impliquées dans la chaîne), et préciser si le catalyseur est toujours actif ou non à la suite de cette réaction.