

# Algèbre et géométrie 1<sup>re</sup> année

#### Chapitres concernés:

- 1. Logique, raisonnement
- 2. Ensembles et applications
- 3. Calculs algébriques
- 4. Nombres complexes, trigonométrie
- 5. Polynômes
- 6. Arithmétique
- 7. Structures algébriques
- 8. Calcul matriciel
- 9. Fractions rationnelles
- 10. Systèmes linéaires
- 11. Géométrie du plan et de l'espace
- 12. Espaces vectoriels
- 13. Applications linéaires
- 14. Dimension finie
- 15. Matrices et applications linéaires
- 16. Déterminants
- 17. Produit scalaire

### Il y a une infinité de nombres premiers

Chapitre concerné : 1. Logique, raisonnement

#### ☐ Ce que montre cet exo

Que les nombres premiers (qui sont des entiers qui n'admettent pas d'autres diviseurs que 1 et eux-mêmes, comme 2, 3, 5, 7, 11, 13, 17, 19, 23...) sont infinis. Il s'agit d'un résultat d'Euclide.

#### • L'énoncé

On souhaite montrer par l'absurde qu'il y a un nombre infini de nombres premiers.

On suppose qu'il y a un nombre fini de nombres premiers  $p_1, p_2, ..., p_k$  triés par ordre croissant. On considère l'entier  $N = p_1 \times p_2 \times \cdots \times p_k$ .

- 1) Montrer que  $N+1>p_k$ .
- 2) Montrer que l'entier N+1 n'admet pas d'autres diviseurs que 1 et lui-même et qu'il est par conséquent premier.
- 3) Montrer que les questions 1) et 2) aboutissent à une contradiction.

#### Corrigé

- 1) N+1= $p_1 \times p_2 \times \cdots \times p_k$ +1. Comme  $p_1 > 2$  (et par conséquent tous les autres  $p_i$ ), on en déduit que N+1> $p_k$ .
- 2) Tout d'abord, les entiers 1 et N+1 divisent N+1. Montrons que ce sont les seuls en considérant k un entier différent de 1 et N+1 et qui divise N+1. Comme  $k \ge 2$ , on en déduit que k admet un diviseur premier (car tout entier supérieur ou égal à 2 admet au moins un diviseur premier) qui figurent nécessairement parmi la liste des nombres premiers  $p_1, p_2, ...,$
- $p_k$ . Appelons-le donc  $p_i$ . Comme  $p_i$  divise k, et que k divise N+1, on en déduit que  $p_i$  divise N+1. Par ailleurs  $p_i$  divise  $N=p_1\times p_2\times \cdots \times p_k$ .
- **3)** Comme  $p_i$  divise N+1 et  $p_i$  divise N, on en déduit que  $p_i$  divise leur différence égale à N+1-N=1. CONTRADICTION ! (car un nombre premier est supérieur ou égal à 2 et donc ne peut pas diviser 1).

Conclusion: il y a bien un nombre infini de nombres premiers.

#### ☐ Ce qu'il faut retenir du cours

- 1) Le raisonnement par l'absurde : pour montrer que la proposition P est vraie, on suppose qu'elle est fausse et qu'on aboutit à une contradiction.
- 2) Tout entier supérieur ou égal à 2 admet au moins un diviseur premier.
- 3) Un nombre premier est un nombre supérieur ou égal à 2 et qui n'admet pas d'autres diviseurs que 1 et lui-même.
- 4) Lorsque a divise b et c, alors a divise leur différence b c.

## $\sqrt{2}$ est irrationnel

Chapitre concerné : 1. Logique, raisonnement

#### $\ \square$ Ce que montre cet exo

Que le nombre  $\sqrt{2}$  est irrationnel (grâce à un raisonnement par l'absurde).

#### • L'énoncé

- 1) Montrer l'implication directe : n pair  $\Rightarrow n^2$  pair.
- **2)** En utilisant un raisonnement par contraposée, montrer que  $n^2$  pair  $\Rightarrow$  n pair.
- 3) En déduire l'équivalence n pair  $\Leftrightarrow$   $n^2$  pair.
- **4)** Application : montrer que  $\sqrt{2}$  est irrationnel en utilisant un raisonnement par l'absurde.

#### • Corrigé

1) Supposons n pair, alors il existe un entier k tel que n = 2k.

On a donc:  $n^2 = (2k)^2 = 4k^2 = 2 \times 2k^2$ , ce qui prouve que  $n^2$  est pair (car de la forme 2j).

Ainsi, on vient de montrer l'implication : n pair  $\Rightarrow$   $n^2$  pair.

**2)** La contraposée de P $\Rightarrow$ Q est non Q $\Rightarrow$  non P . La contraposée de la proposition  $n^2$  pair  $\Rightarrow$  n pair est donc : n impair  $\Rightarrow$   $n^2$  impair. Prouvons cette contraposée :

Supposons n impair, alors n=2k+1 donc  $n^2=\left(2k+1\right)^2=4k^2+4k+1=2\left(2k^2+2k\right)+1$ , ce qui prouve que n est impair (car de la forme 2j+1). Ainsi on vient de montrer n impair  $\Rightarrow n^2$  impair, strictement équivalente à la proposition  $n^2$  pair  $\Rightarrow$  n pair.

- 3) Comme n pair  $\Rightarrow$  n<sup>2</sup> pair (question 1)) et n<sup>2</sup> pair  $\Rightarrow$  n pair (question 2)), on en déduit l'équivalence n pair  $\Leftrightarrow$  n<sup>2</sup> pair.
- 4) Supposons que  $\sqrt{2}=\frac{p}{q}$  avec pgcd(p,q)=1. En passant au carré, on a :  $2=\frac{p^2}{q^2}$  soit

 $p^2=2q^2$  . Cela prouve que  $p^2$  est pair et donc que p est pair : il existe k entier tel que p=2k .

L'égalité  $p^2=2q^2$  devient alors :  $(2k)^2=2q^2$  donc  $4k^2=2q^2$  donc  $2k^2=q^2$ . Cela prouve que  $q^2$  est et donc que q est pair . Bilan : Si  $\sqrt{2}=\frac{p}{q}$  avec pgcd(p,q)=1 alors p et q sont pairs (donc

divisibles par 2). CONTRADICTION ! (car alors  $pgcd(p,q) \neq 1$ ). Conclusion :  $\sqrt{2}$  est bien un nombre irrationnel.

#### ☐ Ce qu'il faut retenir du cours

- 1) Un entier pair est un entier de la forme 2j. Un entier impair est un entier de la forme 2j+1.
- 2) La contraposée de  $P \Rightarrow Q$  est non  $Q \Rightarrow$  non P.
- 3) Montrer l'équivalence  $A \Leftrightarrow B$  revient à montrer  $A \Rightarrow B$  et  $B \Rightarrow A$ .
- 4) Un nombre rationnel est un nombre qui peut s'écrire sous la forme d'une fraction irréductible.
- 5) Le principe du raisonnement par l'absurde.

## Une récurrence pour une somme

Chapitre concerné: 1. Logique, raisonnement

#### ☐ Ce que montre cet exo

Il montre comment démontrer la formule  $1+2+3+\cdots+n=\frac{n(n+1)}{2}$  par récurrence.

#### L'énoncé

En utilisant un raisonnement par récurrence, montrer que  $1+2+3+\cdots+n=\frac{n(n+1)}{2}$  pour  $n\geq 1$  .

#### Corrigé

Soit  $P_n$  la propriété «  $1+2+3+\cdots+n=\frac{n(n+1)}{2}$  ».

**Initialisation**:  $P_1$  est vraie car  $1 = \frac{1 \times 2}{2}$ .

**Hérédité**: Supposons  $P_n$  vraie (c'est-à-dire que  $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ ), et montrons que  $P_{n+1}$ 

est encore vraie (c'est-à-dire que  $1+2+3+\cdots+n+(n+1)=\frac{(n+1)(n+2)}{2}$ ).

$$1 + 2 + 3 + \dots + n + \left(n + 1\right) = \underbrace{\frac{1 + 2 + 3 + \dots + n}{\frac{n(n+1)}{2}}} + \left(n + 1\right) = \frac{n(n+1)}{2} + \left(n + 1\right) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{n(n+1)+2(n+1)}{2} = \frac{(n+2)(n+1)}{2} = \frac{(n+1)(n+2)}{2} \; .$$

 $\textbf{Conclusion:} \ \text{comme} \ P_1 \ \text{est vraie, et que} \ P_n \ \text{est h\'er\'editaire,} \ P_n \ \text{est vraie pour} \ n \geq 1 \, .$ 

#### ☐ Ce qu'il faut retenir du cours

Le principe du raisonnement par récurrence (initialisation, hérédité, conclusion).

## Résolution d'équation par analyse-synthèse

Chapitre concerné : 1. Logique, raisonnement

#### ☐ Ce que montre cet exo

Il montre comment résoudre l'équation  $X^{X} = X^{2}$  par analyse-synthèse.

#### L'énoncé

Résoudre par analyse-synthèse l'équation  $x^x = x^2$  sur  $]0;+\infty[$ .

#### Corrigé

**Analyse:** Soit x > 0 tel que  $x^x = x^2$  alors  $ln(x^x) = ln(x^2)$  donc xln(x) = 2ln(x) donc

$$(x-2) ln(x) = 0 \hspace{0.1cm} donc \hspace{0.1cm} \begin{cases} (x-2) = 0 \\ ou \\ ln(x) = 0 \end{cases} \hspace{0.1cm} donc \hspace{0.1cm} \begin{cases} x = 2 \\ ou \\ x = 1 \end{cases} .$$

Ainsi : si x est solution alors nécessairement x = 1 ou x = 2.

**Synthèse :** 1 est bien solution de l'équation  $x^x = x^2$  car  $1^1 = 1^2$ .

2 est bien solution de l'équation  $x^x = x^2$  car  $2^2 = 2^2$ .

Ainsi il est suffisant que x soit égal à 1 ou à 2 pour que  $X^x = X^2$ .

Conclusion:

Analyse: Si x>0 est solution de  $x^x=x^2$  alors x=1 ou x=2.

Synthèse : Si x = 1 ou x = 2 alors x est solution de  $x^x = x^2$ .

On a donc l'équivalence : 
$$x^x = x^2 \Leftrightarrow \begin{cases} x = 1 \\ \text{ou} \\ x = 2 \end{cases}$$

Ainsi l'équation  $x^x = x^2$  admet pour ensemble des solutions  $S = \{1; 2\}$ .

#### ☐ Ce qu'il faut retenir du cours

1) Un raisonnement par analyse-synthèse est un raisonnement démontrant une implication puis sa réciproque.

Dans la partie analyse, on suppose que x est solution de l'équation, on en déduit une condition nécessaire que doit vérifier x.

Dans la partie synthèse, on regarde si les conditions nécessaires sont aussi suffisantes.

2) 
$$ln(x^n) = nln(x)$$
.

3) 
$$ln(x) = 0 \Leftrightarrow e^{ln(x)} = e^0 \Leftrightarrow x = 1$$
.

## La formule de Vandermonde

Chapitre concerné : 2. Ensembles et applications

#### ☐ Ce que montre cet exo

La démonstration de la formule  $\binom{a+b}{n} = \sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k}$ .

#### • L'énoncé

On considère deux ensembles A et B disjoints tels que card(A) = a et card(B) = b.

On considère maintenant l'ensemble  $E = A \cup B$ .

- 1) Que vaut card(E) ? Déterminer le nombre de sous-ensembles à n éléments de E.
- 2) On considère C, une partie de  $E = A \cup B$  à n éléments. C étant constituée de k éléments de A et de n-k éléments de B (avec  $0 \le k \le n$ ). Combien y a-t-il de possibilités de constituer C?
- 3) En déduire la formule de Vandermonde  $\binom{a+b}{n} = \sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k}$ .

#### Corrigé

- 1) On a card(E) = card(A  $\cup$  B) = card(A) + card(B) card(A  $\cap$  B) = a + b 0 = a + b If y a donc  $\binom{a+b}{n}$  sous-ensembles à n éléments de E.
- 2) Fixons une valeur de k (avec  $0 \le k \le n$ ). Il y a  $\binom{a}{k}$  possibilités pour les k éléments de A et

 $\binom{b}{n-k} \text{ possibilités } n-k \text{ éléments de B ce qui fait } \binom{a}{k} \binom{b}{n-k} \text{ possibilités en tout (principe multiplicatif). Ainsi, k pouvant varier entre 0 et n, le nombre total de manières de constituer C vaut <math display="block">\sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k}.$ 

3) Selon que l'on dénombre à la manière de la question 1) ou de la question 2), on obtient le même nombre de sous-ensembles de n éléments de  $E = A \cup B$ , d'où  $\binom{a+b}{n} = \sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k}$ .

#### □ Ce qu'il faut retenir du cours

- 1)  $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) \operatorname{card}(A \cap B)$ .
- 2) Il y a  $\binom{n}{k}$  sous-parties de k éléments d'un ensemble à n éléments (pour  $0 \le k \le n$ ).
- 3) Le principe multiplicatif  $card(E \times F) = card(E) \times card(F)$ .

# La fonction affine x→mx+p est bijective

Chapitre concerné : 2. Ensembles et applications

#### ☐ Ce que montre cet exo

Toute fonction affine  $f: x \to f(x) = mx + p \pmod{p}$  est injective, surjective et donc bijective.

#### L'énoncé

On considère l'application  $f: x \to f(x) = mx + p \ (m \neq 0)$  définie sur l'ensemble de départ  $E = \mathbb{R}$  et à valeurs dans l'espace d'arrivée  $F = \mathbb{R}$  .

- 1) Démontrer que f est une application injective.
- 2) Démontrer que f est une application surjective.
- 3) Démontrer que f est une application bijective puis déterminer l'application réciproque f<sup>-1</sup>.

#### Corrigé

1) Soient a et b deux éléments de  $E = \mathbb{R}$ . Démontrons l'implication  $f(a) = f(b) \Rightarrow a = b$ .

Supposons f(a) = f(b) alors ma + p = mb + p donc: ma = mb donc a = b (car  $m \ne 0$ ). Conclusion: f est injective.

2) Soit  $y \in F$ . Démontrons qu'il existe  $x \in E$  tel que y = f(x).

 $y = f\left(x\right) \ \text{ \'equivaut \'a} \ y = m\,x + p \ \text{ \'c'est-\'a-dire } \ m\,x = y - p \ \text{ \'c'est-\'a-dire}: \ x = \frac{y - p}{m} \,.$ 

Ainsi pour tout  $y \in F$ , il existe  $x \in E$  (à savoir  $x = \frac{y-p}{m}$ ) tel que y = f(x).

Conclusion: f est surjective.

3) Comme f est injective et surjective, on en déduit que f est bijective. L'application  $f^{-1}$  définie sur F et à valeurs dans E par  $f^{-1}(y) = \frac{y-3}{2}$  est la bijection réciproque recherchée.

#### ☐ Ce qu'il faut retenir du cours

f injective équivaut à :  $f(a) = f(b) \Rightarrow a = b$ .

f surjective équivaut à : pour tout  $y \in F$ , il existe  $x \in E$  tel que y = f(x).

f bijective équivaut à : f injective et surjective.

## Composée injective, composée surjective

Chapitre concerné : 2. Ensembles et applications

#### ☐ Ce que montre cet exo

Une condition suffisante pour qu'une fonction soit injective et une condition suffisante pour qu'elle soit surjective.

#### • L'énoncé

Soient  $f:E \to F$  et  $g:F \to G$  deux applications. Montrer que :

- 1)  $g \circ f$  injective  $\Rightarrow f$  injective.
- **2)**  $g \circ f$  surjective  $\Rightarrow g$  surjective.

#### Corrigé

1) Supposons que f(a) = f(b). Alors  $g \circ f(a) = g \circ f(b)$ . Si  $g \circ f$  est injective alors cela entraîne a = b. Ainsi f(a) = f(b) entraîne a = b, ce qui entraîne f(a) = f(b) entraîne f(a) = f(b)

Ainsi  $g \circ f$  injective  $\Rightarrow$  f injective.

2) Soit  $y \in G$ , si  $g \circ f$  surjective alors il existe  $x \in E$  tel que  $y = g \circ f(x)$  soit y = g(f(x)). Ainsi il existe  $z \in F$  (à savoir z = f(x)) tel que y = g(z), ce qui entraîne g surjective.

Ainsi  $g \circ f$  surjective  $\Rightarrow g$  surjective.

#### ☐ Ce qu'il faut retenir du cours

f injective équivaut à :  $f(a) = f(b) \Rightarrow a = b$ .

 $f:E\to F$  surjective équivaut à : pour tout  $y\in F$ , il existe  $x\in E$  tel que y=f(x).