A. Outils pour le signal et les systèmes

Chap. 1. **P**ré-requis

$m{B}$ ases pour aborder ce chapitre

	Compétence requise : connaître, savoir utiliser	niveau
1	la géométrie euclidienne, les théorèmes de Pythagore et de Thalès	Terminales S et STI
2	les règles de calcul algébrique	Terminales S et STI

Contenu du chapitre

Séquence n°	Compétence visée : connaître, maîtriser	Diaporama	DIT ¹ n°	pages
1	la trigonométrie		1, 2, 6	4-8, 13-14
2	les nombres complexes		3, 6	9, 13-14
3	la dérivation	2 slides	4, 7	10-11, 15-16
4	l'intégration	27 slides	5, 7	12, 16-17
5	les développements limités		8	18-21

$m{M}$ éthodologie de travail

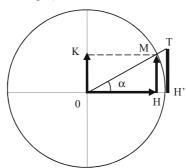
Modalité pédagogique	Méthodes et outils
Enseignement présentiel et travail personnel	 l'interactivité en cours est facilitée par les questions qui figurent sur les DIT² auxquelles doivent répondre les étudiants, à tour de rôle, et par le dialogue et les échanges qui s'ensuivent, en se référant aux résumés de cours que constituent les diaporamas² de ce module l'étudiant porte sa réponse provisoire puis définitive sur le DIT. Une fois le cours terminé il est en possession d'un document de travail explicite, progressif, structuré, illustré et commenté le travail personnel consiste à s'exercer à retrouver les définitions et les propriétés autant de fois qu'il le faut pour les maîtriser et pour savoir faire les exercices et les problèmes en autonomie ces méthodes interactives sont praticables par Internet

¹ DIT : document interactif de travail

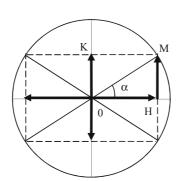
² S'adresser à <u>rossetto.bruno@orange.fr</u> pour un envoi sans frais des DIT vierges à compléter, évolutifs et adaptables, ainsi que des diaporamas.

DIT 1. **O**bjectif : être autonome en trigonométrie

Sur une île déserte (devant sa copie), savoir retrouver les formules trigonométriques



Nom	Définir par une formule	Définir par une phrase
sinus	$\sin \alpha = \frac{\overline{HM}}{OM}$	côté opposé sur hypothénuse
cosinus	$\cos \alpha = \frac{\overline{OH}}{OM}$	côté adjacent sur hypothénuse
tangente	$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\overline{H'T}}{\overline{OH'}}$	si $OH' = 1$ (cercle trigonométrique) tan α = $H'T$: c'est la tangente



lien entre	par une formule	par une phase
sinus	$\sin(\pi - \alpha) = \sin \alpha = \frac{\overline{OK}}{OM}$	deux angles supplémentaires ont même sinus
cosinus	$\cos(-\alpha) = \cos\alpha = \frac{\overline{OH}}{OM}$	deux angles <i>opposés</i> ont même cosinus
tangente	$\tan(\pi + \alpha) = \frac{-\sin\alpha}{-\cos\alpha} = \tan\alpha$	deux angles qui différent de $\pm\pi$ ont même tangente

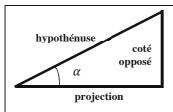
 ${\it O}$ bjectif : à partir des formules d'addition de ${\it sin}$ et de ${\it cos}$ retrouver toutes les autres

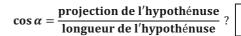
NOM	FORMULE	METHODE
Formules d'addition	sin(a + b) = sin(a)cos(b) + cos(a)sin(b) $sin(a - b) = sin(a)cos(b) - cos(a)sin(b)$ $cos(a + b) = cos(a)cos(b) - sin(a)sin(b)$ $cos(a - b) = cos(a)cos(b) + sin(a)sin(b)$	Par cœur
Formule d'addition des tangentes	$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$	Dans les formules d'addition, diviser le numérateur et le dénominateur par $cos(a)cos(b)$
Expressions en fonction de l'angle moitié	$sin(2a) = 2sin(a)cos(a)$ $cos(2a) = cos^{2}(a) - sin^{2}(a)$ $tan(2a) = \frac{2 tan(a)}{1 - tan^{2}(a)}$	On fait $a = b$ dans les formules d'addition
Expression de $sin^2(a)$ et de $cos^2(a)$ en fonction de $cos(2a)$	$sin^{2}(a) = \frac{1 - \cos(2a)}{2}$ $cos^{2}(a) = \frac{1 + \cos(2a)}{2}$	A partir de $cos(2a) = cos^2(a) - sin^2(a)$ puis en appliquant le théorème de Pythagore : $sin^2(a) + cos^2(a) = 1$
Transforma-	$sin(a)cos(b) = \frac{1}{2} \left[sin(a+b) + sin(a-b) \right]$	Demi somme des formules d'addition de $sin(a + b)$ et $sin(a - b)$ Demi somme des formules
tion des produits en somme	$cos(a)cos(b) = \frac{1}{2} \left[cos(a+b) + cos(a-b) \right]$	d'addition de $cos(a + b)$ et $cos(a - b)$
	$sin(a)sin(b) = \frac{1}{2} \left[cos(a-b) - cos(a+b) \right]$	Demi différence des formules d'addition de $cos(a - b)$ et $cos(a + b)$
Transformation des sommes en produits	$cos(p) + cos(q) = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$ $sin(p) + sin(q) = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$	On pose $p = a + b$ et $q = a - b$, ce qui entraîne $a = \frac{p+q}{2}$ et $b = \frac{p-q}{2}$

NOM	FORMULE				METHODE
Valeurs pour quelques angles remarquables	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 Valeur des angles : au numérateur : π, au dénominateur tous les sous-multiples de 12 Valeur des sin : on remplit systématiquement la première ligne comme indiqué Valeur des cos: les angles complémentaires échangent leur sin et cos 		
Autre	$sin\left(\frac{\pi}{4}\right)$	$ \frac{\sigma}{4} = \frac{\sqrt{2}}{2} \qquad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} $			Théorème de Pythagore dans le quart de carré de côté 1 Théorème $\frac{\sqrt{2}}{2}$ $\frac{1}{\sqrt{2}/2}$
méthode	$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \qquad \sin\left(\frac{\pi}{3}\right) = \frac{1}{2}$				Théorème de Pythagore dans le $\frac{\sqrt{3}}{2}$ de côté 1 $\frac{1}{2}$
Les sin en dehors du premier quadrant	sin(-a) = -sin(a) $sin(\pi - a) = sin(a)$				a
Les cos en dehors du premier quadrant	$cos(-a) = cos(a)$ $cos(\pi - a) = -cos(a)$			a	
Les tan en dehors du premier quadrant	$tan(-a) = -tan(a)$ $tan(\pi + a) = tan(a)$				A partir des deux lignes précédentes

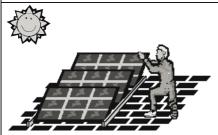
DIT 2. Trigonométrie pratique

tangente courbe $f(x)$ Δy $x_0 \Delta x$	L'application $\mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ est représentée ci-contre par un arc de courbe. La valeur de sa dérivée $f'(x_0)$ est le coefficient directeur, ou coefficient angulaire, ou encore la pente de la tangente à cette courbe au point d'abscisse x_0 . Ce coefficient directeur $f'(x_0)$ est égal à $\sin \alpha \dots $ $\cos \alpha \dots $ $\tan \alpha \dots $
12%	Le panneau ci-contre indique une montée de 12 %. Ce pourcentage est égal au sin de l'angle de montée X au cos de l'angle de montée à la tan de l'angle de montée
longueur de la route élévation verticale α longueur du tunnel . hypothénuse côté	$\sin \alpha = \frac{\text{élévation verticale}}{\text{longueur du tunnel}}?$ $\sin \alpha = \frac{\text{élévation verticale}}{\text{longueur de la route}}?$ $\sin \alpha = \frac{\text{côté opposé}}{\text{hypothénuse}}?$
οpposé longueur du tunnel	$\sin \alpha = \frac{\text{côté adjacent}}{\text{hypothénuse}}?$ Revenons au panneau routier ci-dessus. La mesure de la
2 α	revenois au painieau foutier ci-dessus. La mesure de la pente a donné 12 %. Ce pour centage est égal à (ce qui évite de creuser un tunnel pour la $\sin \alpha$ X mesurer!) $\cos \alpha$ \tan \alpha





$$\cos \alpha = \frac{\text{côt\'e adjacent}}{\text{hypoth\'enuse}}$$
?

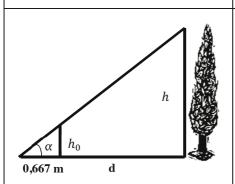


Le panneau solaire ci-contre a une largeur de 1 m et fait un angle α de 30 ° avec le toit. L'emprise (la largeur qu'il occupe, la *projection*) sur le toit est de

C'est la projection, donc $\cos 30^\circ$, soit 0,866 m X

0,707 m.

0,5 *m*.

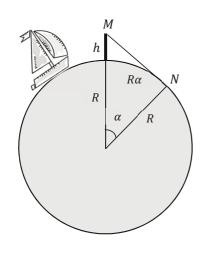


On peut évaluer la hauteur h en mesurant h_0 au bout de son bras, de longueur 0,667 m. Calculer h en fonction de h_0 et d.

$$\tan \alpha = \frac{h_0}{0,667} = \frac{h}{d}$$

$$h = \frac{3}{2}h_0d$$

Remarque. Ceci revient à appliquer le théorème de Thalès.



Un maître-nageur M est juché sur un siège de hauteur h. A quelle distance maximale MN peut-il voir un nageur N en fonction de h, $R=6\,371\,km$ étant le rayon de la Terre ? Pour un angle α très petit, un développement limité au $2^{\rm ėme}$ ordre donne

 $\sin \alpha \cong \tan \alpha \cong \alpha \text{ et } \cos \alpha \cong 1 - \frac{\alpha^2}{2}$

$$\tan \alpha = \frac{MN}{R} = \alpha$$
 , soit $MN = R\alpha$

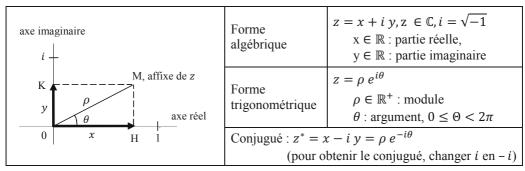
$$\cos \alpha = \frac{R}{R+h}$$
, soit $-\frac{\alpha^2}{2} = \frac{R}{R+h} - 1 = \frac{-h}{R+h}$

$$\alpha^2 = \frac{2h}{R+h} \cong \frac{2h}{R}$$
 et $MN = R\sqrt{\frac{2h}{R}} = \sqrt{2hR} = 3570\sqrt{h}$

A N. Pour h = 1,75 m, MN = 4722 met, pour h = 5 m, MM = 7982 m

DIT 3. Nombres complexes

Définitions relatives à un nombre z appartenant au corps des complexes $\mathbb C$



Opération		Expression	Remarques
Passage	algébrique → trigonométrique	$\rho = \sqrt{x^2 + y^2} = \sqrt{z} z^*$ $\theta = Arctan \frac{y}{x} (+\pi \operatorname{si} x < 0)$	Att. ! $Arct$ an est défini pour $-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$, si $x < 0$, ajouter π
	trigonométrique → algébrique	$x = \rho \cos(\theta)$ $y = \rho \sin(\theta)$	A partir de la représentation
Addition et soustraction	algébrique	$\begin{vmatrix} x = x_1 \pm x_2 \\ y = y_1 \pm y_2 \end{vmatrix}$	Simple
$z=z_1\pm z_2$	trigonométrique		Moins utile
Multiplication	algébrique	$x = x_1 x_2 - y_1 y_2 y = x_1 y_2 + y_1 x_2$	Moins utile
$z = z_1 z_2$	trigonométrique	$ \varrho = \rho_1 \rho_2 \\ \theta = \theta_1 + \theta_2 $	On multiplie les modules et on ajoute les arguments
Division	algébrique		Moins utile
$z = \frac{z_1}{z_2}$	trigonométrique	$\varrho = \frac{\rho_1}{\rho_2}$ $\theta = \theta_1 - \theta_2$	On divise les modules et on soustrait les arguments
Puissance z ^r r entier relatif (puissance) ou fractionnaire (racine)	trigonométrique	module : ρ^r argument : $r(\theta + 2k\pi), \ k \in \mathbb{Z}$ Si r est fractionnaire, il y a n déterminations, $1 \le k \le n$. Pour les obtenir, prendre des valeurs entières successives de k , jusqu'à retomber sur les mêmes résultats, à 2π près.	Attention aux n résultats si r est un nombre fractionnaire (cas d'une racine). Exemples. Les 3 racines cubiques de l'unité. Voir aussi la transformée de Fourier discrète et la FFT.

DIT 4. \boldsymbol{O} bjectif : être autonome en calcul de dérivées

Propriétés de la dérivation

Soit les fonctions de la va dans l'intervalle où elles f et $g: \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$	sont continues:	Dérivée par rapport à x	Commentaires
Notation	f(x)	$f'(x) = \frac{df}{dx}$	
Ctte réelle ou complexe	С	0 (zéro)	
Linéarité : si C et D sont des constantes réelles ou complexes	C f(x) + D g(x)	C f'(x) + Dg'(x)	La dérivée d'une combinaison linéaire est la combinaison linéaire des dérivées

Quelques dérivées usuelles

Puissance entière ou fractionnaire, positive ou négative	$x^r, r \neq 0$	rx^{r-1}	Exemples : dérivées de \sqrt{x} , x^n , $\frac{1}{x}$, $\frac{1}{x^2}$
Exponentielle	e ^x	e ^x	seule fonction inchangée par dérivation
Logarithme	ln(x), x > 0	$\frac{1}{x}$	vient de la définition même de $ln(x)$
Sinus	sin(x)	cos(x)	
Cosinus	cos(x)	-sin(x)	
Tangente	tan(x)	$1 + tan^2(x) = \frac{1}{cos^2(x)}$	
Arctangente	Arctan(x)	$\frac{1}{1+x^2}$	à retrouver à partir des fonct. inverses (cf. ci-dessous)

Utilisation de la notation différentielle

	Fonction de la variable réelle x	Dérivée par rapport à x	Commentaires	
Fonction de u, qui est fonction de x	f[u(x)]	$\frac{df}{dx} = \frac{df}{du} \frac{du}{dx}$	Les éléments différentiels, par	
Application	$ sin(ax + b) \\ = sin(u) $	$u'\cos u = a\cos(ax+b)$	exemple <i>dx</i> , sont des nombres algébriques comme les autres	