Première partie : Eléments de physique statistique	15
Chapitre 1 : Physique statistique classique	17
I. Définitions	17
1. Etat microscopique d'un système	17
2. Entropie statistique	19
3. De l'espace des phases au domaine des énergies	20
II. La fonction de distribution de Boltzmann	21
1. Système isolé	21
2. Système fermé	22
3. Système ouvert	23
4. Interprétation physique	24
III. Distribution des vitesses de Maxwell	25
1. Distribution de Maxwell	25
2. Principe d'équipartition	26
IV. Exercices	27
Exercice 1 : Espace des phases	27
Exercice 2 : Gaz parfait – Distribution de Maxwell	28
Exercice 3 : Gaz parfait – Energie potentielle	28
V. Corrections	29
Chapitre 2 : Les statistiques quantiques	37
I. Définitions	37
1. Le passage classique-quantique	37
2. Les grands principes	38
II. Les lois de distribution quantique	41
1. Loi de Bose-Einstein	42
2. Loi de Fermi-Dirac	43
3. Signification des multiplicateurs de Lagrange	44
4. Retour à Boltzmann	44
III. Exercices	45

Exercice 1 : Notions de base	45
Exercice 2 : Etude d'un gaz d'électrons	46
IV. Corrections	48
Deuxième Partie : Applications à des systèmes gazeux	55
Chapitre 3 : Le rayonnement thermique	57
I. Introduction	57
II. Calcul de l'énergie des ondes électromagnétiques	58
1. Calcul de la luminance énergétique spectrale	58
2. Evolutions qualitatives	60
Chapitre 4 : Gaz d'électrons dans un semi-conducteur	63
I. Introduction	63
II. Modèle à deux bandes	63
1. Les cristaux covalents	63
2. Structures de bandes dans un semi-conducteur	64
3. Concept de masse effective	66
4. Concept de trou – Peuplement des bandes d'énergie	68
III. Calcul des densités d'états	69
IV. Le semi-conducteur intrinsèque	71
1. Calcul des concentrations de porteurs libres	71
2. Concentration intrinsèque de porteurs libres	74
3. Calcul du niveau de Fermi	74
4. Approche quantitative	75
V. Le semi-conducteur extrinsèque	75
1. Choix des impuretés	75
2. Etude qualitative du dopage : équations de base	77
3. Cas limites	79
VI. Exercices	80
Exercice 1 : Masse effective	80
Exercice 2 : Modèle à deux niveaux	80
Exercice 3 : Densité d'états bidimensionnelle	81
Exercice 4 : Le fil quantique – densité d'états	81
Exercice 5 : Densité d'états et non-parabolicité	82
Exercice 6 : Approximations de Boltzmann	83
Exercice 7 : Conductivité électrique	84

Exercice 8 : Résistivité	84
Exercice 9 : Compensation d'un matériau semi-conducteur	85
Exercice 10 : Statistique du semi-conducteur	86
Exercice 11 : Synthèse	86
VII. Corrections	90
Chapitre 5 : Gaz d'électrons hors-équilibre	103
I. Introduction	103
II. Equation de transport de Boltzmann	103
1. La fonction de distribution	104
2. Equation de transport de Boltzmann	105
3. Interactions – Mobilité – Diffusion	106
III. Equations des courants : modèle de dérive-diffusion	108
1. Approche classique; courant de conduction	108
2. Approche particulaire	111
3. Equations de conservation de la charge	114
4. Synthèse	115
IV. Exercices	116
Exercice 1 : La photoconductivité	116
Exercice 2 : Approche intuitive de la jonction p-n	118
Exercice 3: Photo-détecteur – Distribution des photo-porteurs	119
Exercice 4 : Diffusion de porteurs minoritaires	121
Exercice 5 : Diffusion – Expérience de Schockley-Haines	122
Exercice 6 : La jonction n-i-n	123
V. Corrections	127
Troisième partie : Propriétés thermiques, diélectriques, magnétiques et supraconductrices des solides	141
Chapitre 6 : Vibrations et chaleur spécifique	143
I. Introduction	143
II. Théorie de Dulong et Petit (classique)	143
III. Théorie d'Einstein	145
IV. Théorie de Debye	146
V. Interaction électron-phonon	148
VI. Exercices	149
Exercice 1 : Energie de vibration dans un système bidimensionnel	149

Exercice 2 : Gaz de phonons bi- et uni-dimensionnel	150
VII. Corrections	150
Chapitre 7 : Propriétés diélectriques des matériaux	155
I. Mise en évidence	155
II. Le vecteur polarisation	155
1. Actions du champ électrique	155
2. Potentiel créé par un dipôle électrique	157
3. Le vecteur polarisation	157
III. Champ électrique créé par un matériau polarisé	158
1. Calcul du potentiel et du champ électrique	158
2. Exemple de charges fictives de polarisation	159
IV. Le vecteur induction	160
V. Diélectriques linéaires homogènes et isotropes	162
VI. Une approche microscopique de la permittivité	164
1. Le champ local	164
2. Polarisation induite	165
3. Polarisation d'orientation	165
4. Calcul de $< \cos \theta >$	166
VII. Exercices	168
Exercice 1 : Le condensateur plan	168
Exercice 2 : Un diélectrique feuilleté	168
VIII. Corrections	169
Chapitre 8 : Propriétés magnétiques des matériaux	177
I. Faits fondamentaux	177
II. Courants moléculaires d'Ampère, vecteur aimantation	n 178
III. Potentiel vecteur créé par un matériau aimanté	180
IV. Propriétés fondamentales du champ magnétique	182
V. Le vecteur excitation magnétique	182
VI. Matériaux magnétiques linéaires homogènes et isotr	ropes 182
VII. Diamagnétisme et Paramagnétisme	183
VIII. Approche microscopique	183
1. Moments magnétiques élémentaires	183
2. Rappels sur les équations du mouvement	184
3. Calcul de l'énergie	184
4. La diamagnétisme	185

5. Le paramagnétisme	185
IX. Exercice	188
Exercice 1 : Calcul d'aimantation	188
X. Correction	189
Chapitre 9 : La supraconductivité (brève introduction)	193
I. Introduction	193
1. Définitions	193
2. Un peu d'histoire	194
II. Propriétés fondamentales	195
1. La résistivité	195
2. Diamagnétisme parfait : Effet Meissner	196
3. Notion de champ critique / courant critique	197
III. Aspects théoriques	197
1. D'une théorie phénoménologique vers une théorie microscopique	197
2. Les supraconducteurs à haute température	198
IV. Applications	199
1. En électronique : la jonction SIS – Effet Josephson	199
2. En électrotechnique : câble supraconducteur	200
Quatrième partie : Physique des dispositifs électroniques à semi- conducteurs	201
Chapitre 10 : Les jonctions (I) – Principes et Homo-jonctions	203
I. Introduction	203
1. Le contexte	203
2. Description des matériaux	203
3. Les différentes jonctions	205
4. Méthodologie d'analyse des jonctions à l'équilibre thermodynamique	205
II. La jonction p-n	206
1. Approche à l'équilibre thermodynamique	206
2. La jonction p-n hors équilibre	212
3. Applications	217
III. Exercices	218
Exercice 1 : La jonction p-n graduelle	218

Exercice 2 : Conductance et capacité de diffusion d'une jonction	219
p-n Exercice 3 : La diode photovoltaïque	222
IV. Corrections	222
1V. Concetions	224
Chapitre 11 : Les jonctions (II) – Les hétérojonctions métallo- diélectriques	231
I. Introduction	231
II. La jonction métal/semi-conducteur	231
1. Approche qualitative : physique de la jonction	231
2. Approche quantitative de la jonction Schottky : structure de bandes	234
3. La jonction Schottky hors équilibre	235
4. Applications	240
III. La jonction métal/isolant/semi-conducteur	241
1. Principe	241
2. Effet de champ pour un semi-conducteur extrinsèque	242
IV. Exercices	252
Exercice 1 : Contact Métal/Semi-conducteur	253
Exercice 2 : Capacité d'une jonction Schottky	253
Exercice 3: La diode Schottky	253
Exercice 4 : Jonction MIS – semi-conducteur intrinsèque	255
V. Corrections	256
Chapitre 12 : Les jonctions (III) – Les hétérojonctions semi-conductrices	263
I. Introduction	263
II. Formation des hétérojonctions semi-conductrices	263
1. Aspects cristallins	263
2. Schéma d'étude	265
3. Exemple 1 : Al _{0.3} Ga _{0.7} As (dopé N _D) / GaAs (nid)	267
4. Exemple 2 : Hétérojonction multiple	268
III. De l'introduction des effets ondulatoires	269
1. Une équation de propagation pour l'électron	269
2. La quantification de l'énergie : le puits de potentiel infini	271
3. L'effet tunnel : la marche de potentiel	273
4. Structure ouverte: estimation du courant	275

IV. Exercices	278
Exercice 1 : Hauteurs de barrière	278
Exercice 2 : Hétéro-structure à dopage modulé	279
Exercice 3: Un puits semi-infini	280
Exercice 4 : Transmission d'une marche de potentiel	281
Exercice 5 : Energies de résonance	282
V. Corrections	283
Chapitre 13 : Composants nanométriques et Architectures alternatives	291
I. Introduction	291
II. Composants à hétérojonctions semi-conductrices	291
1. La diode simple barrière à hétéro-structure	291
2. La diode à effet tunnel résonnant	294
III. Structuration multidimensionnelle	298
1. Puits, fils et boites quantiques	298
2. La quantification de conductance	302
IV. Nouvelles architectures	303
1. Les guides d'ondes électroniques	303
2. Les automates quantiques cellulaires	304
3. L'ordinateur quantique	305
V. Exercices	307
Exercice 1 : Transmission au travers d'une barrière de potentiel	307
Exercice 2 : Structure simple barrière	308
Exercice 3 : Structure double barrière – simple puits	310
Exercice 4 : Structure double barrière – simple puits (suite)	311
Exercice 5 : Conduction dans les diodes à effet tunnel résonnant	313
Exercice 6 : Le fil quantique	314
Exercice 7 : Guides d'ondes électroniques	315
Exercice 8 : Les automates quantiques cellulaires	316
VI. Corrections	318
Conclusion – Bibliographie	329
Index	331