La composition de la matière

L'atome

Entourer la (ou les) proposition(s) vraie(s)

- 1. Un atome.
 - A. Est électriquement neutre.
 - B. Peut être chargé positivement.
 - C. Peut être chargé négativement.
 - D. Est constitué d'un noyau contenant des protons, neutrons et électrons.
 - E. Est la plus petite particule qui possède les propriétés des éléments.
- **2.** Le noyau d'un atome.
 - A. Contient des protons et des électrons.
 - B. Contient des protons et des neutrons.
 - C. Contient des particules chargées positivement et négativement.
 - D. A une charge positive.
 - E. Ne contient aucune particule chargée.
- **3.** Les affirmations suivantes sont elles exactes?
 - A. Des isotopes ont le même nombre de protons et d'électrons et un nombre différent de neutrons.
 - B. Des isotopes possèdent un nombre de masse différent.
 - C. Des isotopes sont présents dans la nature dans les mêmes proportions relatives.
 - D. Des isotopes naturels sont tous stables; les isotopes artificiels sont tous radioactifs.

1. L'atome

- E. Des isotopes possèdent des propriétés chimiques très différentes.
- 4. L'élément manganèse (Mn).
 - A. Dans un atome de ⁵⁵₂₅Mn, il y a 80 nucléons.
 - B. $_{25}^{56}$ Mn et $_{25}^{55}$ Mn sont 2 isotopes.
 - C. 55 Mn et 55 Mn sont 2 isotopes.
 - D. Il appartient à la colonne des alcalino-terreux.
 - E. Un noyau d'atome de manganèse ⁵⁵₂₅ Mn compte 25 électrons, 30 neutrons et 25 protons.
- 5. La composition centésimale de l'adénine est la suivante : C 44,44%, H 3,73% et N 51,83%. Sa masse moléculaire est égale à 135 uma. On donne C : 12 uma ; H : 1 uma et N : 14 uma. Quelle est sa formule brute ?
 - A. C₄H₄N₄.
 - B. C5H5N5.
 - C. C₄H₅N₄.
 - D. C₄H₄N₅.
 - E. Aucune des propositions ci-dessus.
- 6. En 1885, Balmer observa le premier les quatre raies du spectre d'émission de l'atome d'hydrogène situées dans le visible. L'une d'entre elles avaient pour nombre d'onde v' = 2,3.10⁶ m⁻¹. La variation d'énergie correspondant à cette raie d'émission de l'atome d'hydrogène est d'environ
 - A. 4,6.10⁻¹⁹ J.
 - B. 4,6.10⁻¹⁶ kJ.
 - C. 4,6.10⁻²⁷ J.

- D. 4.6.10⁻² J.
- E. 4,6.10⁻²⁸J.
- 7. A une longueur d'onde de 500 nm, on associe :
 - A. Un nombre d'onde de 200.10⁴ cm⁻¹.
 - B. Un nombre d'onde de 200.10⁴ m⁻¹.
 - C. Une fréquence de 6.10¹⁴ s⁻¹.
 - D. Une fréquence de 1,6.10⁻¹⁴ s⁻¹.
 - E. Aucune des propositions ci-dessus.
- 8. Calcul des longueurs d'onde présentes dans un spectre : Les raies visibles du spectre de l'hydrogène forment la « série de Balmer ». Ces raies sont provoquées par la chute d'un électron d'une orbite de haute énergie vers l'orbite d'énergie la plus basse, décrite par n=2. Calculer la longueur d'onde (nm) de la raie β décrite par une chute à partir de n = 4 avec $\Re = 1,097.10^7 \, \text{m}^{-1}$.
 - A. 397.
 - B. 410.
 - C. 434.
 - D. 486.
 - E. 656.
- 9. A propos des nombres quantiques :
 - A. n, le nombre principal, traduit la dimension du noyau de l'atome.
 - B. n, le nombre principal, décrit la couche à laquelle appartient l'électron.
 - C. Plus n est petit, plus la trajectoire orbitale des électrons est loin du noyau.
 - D. Pour une même valeur de n, plus l est petit, plus la stabilité de l'électron dans la sous couche est faible.

1. L'atome

- E. m, nombre quantique magnétique, définit le nombre maximal d'orbitales dans une sous-couche.
- **10.** Les nombres quantiques n, l et m peuvent-ils avoir ensemble les valeurs suivantes ?
 - A. n=2, 1=0, m=0.
 - B. n = 4, l = 1, m = -2.
 - C. n = 3, 1 = 1, m = -1.
 - D. n = 4, 1 = -1, m = 0.
 - E. n = 2, l = 0, m = -1.
- 11. Une orbitale.
 - A. s est sphérique.
 - B. s est caractérisée par n = 0.
 - C. s est caractérisée par l = 0.
 - D. p est caractérisée par 1=0.
 - E. d est caractérisée par 1 = 2.
- 12. Dans un atome,
 - A. n = 4 caractérise 32 électrons.
 - B. n = 3, l = 2 caractérisent 8 électrons.
 - C. n = 3, m = 0 caractérisent 8 électrons.
 - D. n = 4, l=0, s= +1/2 caractérisent 2 électrons.
 - E. n = 5, l = 1, m = 0, s = +1/2 caractérisent 1 électron.
- **13.** La sous couche 3d.
 - A. Est caractérisée par m = 0.
 - B. Est caractérisée par l = 2.
 - C. Peut contenir au maximum 14 électrons.

I. La composition de la matière

- D. Est caractérisée par un nombre quantique principal égal à 4.
- E. Peut être remplie par au maximum 5 électrons de nombre de spin égal à ½.
- **14.** Indiquer les configurations électroniques suivantes qui ne sont pas dans un état fondamental ou sont impossibles.
 - A. $1s^2 2s^2 2p^6 3s^2 3p^2 4s^1$.
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^1 5s^2$.
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$.
 - D. 1s² 2s² 2p⁵ 2d¹.
 - $E. \ 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \\ 6p^3.$
- **15.** Donner les configurations électroniques correctes à l'état fondamental.
 - A. $[_8O]$: $1s^2 2s^2 2p^6$.
 - B. [4Be]: $1s^2 2s^2$.
 - C. [23V]: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$.
 - D. [20Ca]: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$.
 - E. [18Ar]: $1s^2 2s^2 2p^6 3s^2 3p^6$.
- **16.** Le zinc (Z = 30):
 - A. Sa répartition électronique est $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$.
 - B. Sa répartition électronique est $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ $4s^2$
 - C. Par perte de 2 électrons, il devient un anion.
 - D. $[_{30}Zn^{2+}]$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$.
 - E. $[_{30}Zn^{2+}]$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^{10}$.

- **17.** L'élément Z appartient à la 15^e famille ou colonne et à la cinquième période. Il est caractérisé par :
 - A. Z = 33.
 - B. Z = 32.
 - C. A = 50.
 - D. Z = 51
 - E. Il appartient à la famille des gaz nobles.
- 18. L'élément de configuration électronique 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶,
 - A. Appartient à la famille des gaz nobles.
 - B. Est un métal de transition.
 - C. Appartient à la cinquième colonne de la classification.
 - D. Appartient à la deuxième colonne du bloc s.
 - E. Contient des atomes dans un état excité.
- **19.** Soit le Technétium (Z = 43).
 - A. Il appartient au bloc s.
 - B. Il appartient au bloc d.
 - C. Il a 5 électrons célibataires.
 - D. La sous couche possédant l'énergie la plus élevée appartient à une couche de nombre quantique principal égal à 5.
 - E. La sous couche appartenant à la couche de nombre quantique principal égal à 5 est complète.
- **20.** Soit l'atome de soufre ₁₆S.
 - A. A l'état fondamental, S présente 4 électrons célibataires.
 - B. A l'état fondamental, S présente 2 électrons célibataires.

I. La composition de la matière

- C. Les orbitales atomiques occupées par les électrons célibataires sont caractérisées par un nombre quantique n = 3.
- D. Les orbitales atomiques occupées par les électrons célibataires appartiennent à une sous couche caractérisée par un nombre quantique secondaire 1 = 2.
- E. La couche externe est caractérisée par n=2.
- **21.** Quelle peut-être la configuration électronique d'un élément appartenant à la 16^e colonne ?
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6$.
 - B. $1s^2 2s^2 2p^4$.
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$.
 - D. $1s^2 2s^2 2p^6 3s^2 3p^4$.
 - E. $1s^2 2s^2 2p^6 3s^2 3p^6$.
- 22. Quelle est la configuration électronique d'un halogène appartenant à la même période que Rb (Z = 37)?
 - A. $1s^2 2s^2 2p^5$.
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$.
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^5$.
 - D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2$.
 - E. Aucune des propositions ci-dessus.
- 23. Un élément ayant à l'état fondamental une configuration électronique se terminant par 4d³,
 - A. Appartient à la deuxième colonne de la classification.
 - B. A pour numéro atomique Z = 41.
 - C. Est un gaz noble.
 - D. Appartient à la 4^e ligne de la classification périodique.
 - E. Possède sa couche L complète.