CHAPITRE 1

ESPACES VECTORIELS

1.1 Définitions et propriétés de base

1.1.1 Espace vectoriel sur un corps quelconque

Définition 1.1.1

Soient (E, +) un groupe commutatif et $(K, +, \times)$ un corps commutatif. On dit que E est un K-espace vectoriel ou un espace vectoriel sur K, s'il existe une application de $K \times E$ vers E, appelée loi externe sur E, qui à $(\alpha, x) \in K \times E$ fait correspondre $\alpha \cdot x$, vérifiant les axiomes suivants :

- i) $\forall x \in E, \ 1_K \cdot x = x.$
- $ii) \ \forall \alpha \in K, \forall \beta \in K, \forall x \in E, \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x.$
- $iii) \ \forall \alpha \in K, \forall \beta \in K, \forall x \in E, \ (\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x).$
- $iv) \ \forall \alpha \in K, \forall x \in E, \forall y \in E, \ \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$

Dans ce cas, les éléments de E sont appelés des **vecteurs** et se notent x, y, z, \ldots , tandis que les éléments de K sont appelés des **scalaires** et se notent $\alpha, \beta, \gamma, \lambda, \cdots$.

1.1.2 Conséquences de la définition

Soit E un K-espace vectoriel, alors on a les règles de calcul suivantes :

- a) $\forall x \in E, \ 0_K \cdot x = 0_E.$
- b) $\forall \lambda \in K, \ \lambda \cdot 0_E = 0_E.$
- c) $\forall \lambda \in K, \forall x \in E, \ \lambda \cdot x = 0_E \iff \lambda = 0_K \text{ ou } x = 0_E.$

Démonstration.

a) D'après l'axiome ii) de la définition, nous avons

$$0_K \cdot x = (0_K + 0_K) \cdot x = 0_K \cdot x + 0_K \cdot x$$

donc $0_K \cdot x = 0_E$.

b) D'après l'axiome iv) de la définition, nous avons

$$\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E$$

donc $\lambda \cdot 0_E = 0_E$.

c) (\Longrightarrow) Supposons que $\lambda \cdot x = 0_E$ et $\lambda \neq 0_K$ et montrons que $x = 0_E$. Puisque $\lambda \cdot x = 0_E$, alors $\lambda^{-1} \cdot (\lambda \cdot x) = \lambda^{-1} \cdot 0_E = 0_E$, or d'après l'axiome iii) de la définition, nous avons

$$\lambda^{-1} \cdot (\lambda \cdot x) = (\lambda^{-1}\lambda) \cdot x = 1_K \cdot x$$

donc d'après l'axiome i) de la définition, on a $x = 0_E$.

1.1.3 Exemples fondamentaux

1. Soient $(L, +, \times)$ un corps commutatif et K un sous-corps de L, alors L peut-être considéré comme un K-espace vectoriel pour la loi externe définie comme suit,

$$\begin{split} K \times L &\longrightarrow L \\ (\lambda, x) &\longmapsto \lambda \cdot x = \lambda \times x \end{split}$$

Par exemple, $L=\mathbb{C}$ et $K=\mathbb{R}$, $L=\mathbb{R}$ et $K=\mathbb{Q}$ ou $L=\mathbb{C}$ et $K=\mathbb{Q}$. En particulier, tout corps K peut-être considéré comme un espace vectoriel sur lui-même.

2. Soit K un corps commutatif, alors pour tout entier $n \geq 1$, K^n est un K-espace vectoriel pour la loi externe,

$$K \times K^n \longrightarrow K^n$$

 $(\lambda, x) \longmapsto \lambda \cdot x = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$

où
$$x = (x_1, x_2, \dots, x_n)$$
.

3. Soient K un corps commutatif et K[X] l'anneau des polynômes à coefficients dans K. Alors K[X] est un K-espace vectoriel pour la loi externe,

$$K \times K[X] \longrightarrow K[X]$$

 $(\lambda, P) \longmapsto \lambda \cdot P = \sum_{i=1}^{m} (\lambda a_i) X^i$

où
$$P = \sum_{i=1}^{m} a_i X^i$$
.

4. Soient E_1, E_2, \ldots, E_n des espaces vectoriels sur le même corps K. Alors le produit cartésien $E_1 \times E_2 \times \cdots \times E_n$ est un K-espace vectoriel pour la loi externe définie par l'application de $K \times (E_1 \times E_2 \times \cdots \times E_n)$ vers $E_1 \times E_2 \times \cdots \times E_n$ qui à $(\lambda, (x_1, x_2, \ldots, x_n)) \in K \times (E_1 \times E_2 \times \cdots \times E_n)$ fait correspondre

$$\lambda \cdot (x_1, x_2, \dots, x_n) = (\lambda \cdot x_1, \lambda \cdot x_2, \dots, \lambda \cdot x_n)$$

 $E_1 \times E_2 \times \cdots \times E_n$ s'appelle l'espace vectoriel produit des K-espaces vectoriels E_1, E_2, \ldots, E_n .

5. Soient E un K-espace vectoriel, A un ensemble non vide quelconque et E^A l'ensemble de toutes les applications de A vers E. Alors E^A est un K-espace vectoriel pour la loi externe,

$$K \times E^A \longrightarrow E^A$$

 $(\lambda, f) \longmapsto \lambda \cdot f$

où $\lambda \cdot f$ est l'application de A vers E définie par,

$$\forall a \in A, \ (\lambda \cdot f)(a) = \lambda \cdot f(a)$$

Rappelons aussi que si f et g sont deux applications de A vers E, alors f+g est l'application de A vers E définie par,

$$\forall a \in A, (f+g)(a) = f(a) + g(a)$$

1.2 Sous-espaces vectoriels

1.2.1 Définition et exemples

Définition 1.2.1

Soient E un K-espace vectoriel et F une partie de E. On dit que F est un sous-espace vectoriel de E, si

- i) (F,+) est un sous-groupe de (E,+).
- $ii) \ \forall \lambda \in K, \forall x \in F, \ \lambda \cdot x \in F.$

Remarque 1

 $Si\ F\ est\ un\ sous-espace\ vectoriel\ de\ E,\ alors\ F\ est\ un\ espace\ vectoriel\ pour\ la$ loi externe induite par celle de E:

$$K \times F \longrightarrow F$$

 $(\alpha, x) \longmapsto \alpha \cdot x$

Proposition 1.2.1

Soient E un K-espace vectoriel et F une partie de E. Alors F est un sous-espace vectoriel de E, si, et seulement si,

- i) $F \neq \emptyset$.
- $ii) \ \forall x \in F, \forall y \in F, \ x + y \in F.$
- $iii) \ \forall \lambda \in K, \forall x \in F, \ \lambda \cdot x \in F.$

 $D\acute{e}monstration.$ (\Longrightarrow) Trivial.

- (\Leftarrow) Supposons que F vérifie i), ii) et iii) et montrons que (F, +) est un sous-groupe de (E, +). Donc on doit vérifier que,
 - $-F \neq \emptyset$.
 - $--\forall x \in F, \forall y \in F, \ x y \in F.$

Soient $x \in F$ et $y \in F$, puisque, par hypothèse $F \neq \emptyset$, alors il suffit de voir que $x - y \in F$.

D'après iii),
$$(-1_K) \cdot y \in F$$
 avec $(-1_K) \cdot y = -y$, donc d'après ii), $x + (-y) \in F$.

Remarque 2

Soit K un corps commutatif. Pour montrer qu'un ensemble F est un K-espace vectoriel, il suffit, dans la plupart des cas, de montrer que F est un sous-espace vectoriel d'un K-espace vectoriel connu.

Exemples

- 1. Pour tout K-espace vectoriel E, les parties $\{0_E\}$ et E sont des sous-espaces vectoriels de E.
- 2. Soit K un corps commutatif. Pour tout entier $n \geq 0$, on désigne par $K_n[X]$ la partie de K[X] définie par,

$$K_n[X] = \{ P \in K[X] : \deg(P) \le n \}$$

Alors $K_n[X]$ est un K-espace vectoriel.

Il suffit de vérifier que $K_n[X]$ est un sous-espace vectoriel de K[X].

- i) Si on suppose que $deg(0) = -\infty$, alors pour tout entier $n \ge 0$, $K_n[X]$ contient le polynôme nul, par suite $K_n[X] \ne \emptyset$.
- ii) On sait que pour tout $P \in K[X]$ et pour tout $Q \in K[X]$, on a

$$\deg(P+Q) \le \sup(\deg(P), \deg(Q))$$

Donc $si \deg(P) \le n$ et $\deg(Q) \le n$, alors $\deg(P+Q) \le n$ et par suite, on a $P+Q \in K_n[X]$.

iii) On sait, aussi, que pour tout $\lambda \in K$ et pour tout $P \in K[X]$,

$$deg(\lambda P) \le deg(P)$$
 et si $\lambda \ne 0$ alors $deg(\lambda P) = deg(P)$

Donc si $\lambda \in K$ et $P \in K_n[X]$, alors $\lambda \cdot P \in K_n[X]$.

3. L'ensemble F des suites réelles qui tendent vers zéro à l'infini, est un R-espace vectoriel,

$$F = \{(x_n)_{n \ge 0} \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_n = 0\}$$

Il suffit de montrer que F est un sous-espace vectoriel de $E = \mathbb{R}^{\mathbb{N}}$.

4. Soit I un intervalle de \mathbb{R} , alors $\mathcal{C}(I,\mathbb{R})$, l'ensemle des fonctions continues de I vers \mathbb{R} , est un \mathbb{R} -espace vectoriel. Il suffit de vérifier que $\mathcal{C}(I,\mathbb{R})$ est un sous-espace vectoriel de \mathbb{R}^I , l'espace vectoriel de toutes les applications de I vers \mathbb{R} .

1.2.2 Opérations sur les sous-espaces vectoriels

Intersection

Proposition 1.2.2

Soit E un K-espace vectoriel, alors l'intersection d'une famille quelconque de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

 $D\acute{e}monstration$. Soit $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de E, où I est un ensemble d'indice quelcomque et non vide. La vérification que $\bigcap_{i\in I} F_i$ est un sous-espace vectoriel de E est laissée à titre d'exercice. Rappelons que,

$$x \in \bigcap_{i \in I} F_i \iff \forall i \in I, \ x \in F_i$$

Réunion

La réunion de deux sous-espaces vectoriels de E n'est pas toujours un sous-espace vectoriel de E. Cependant on a la proposition suivante :

Proposition 1.2.3

Soient E un K-espace vectoriel quelconque, F et G deux sous-espaces vectoriels de E. Alors $F \cup G$ est un sous-espace vectoriel de E, si et seulement si, $F \subseteq G$ ou $G \subseteq F$.

Démonstration. (\Longrightarrow) Supposons que $F \cup G$ est un sous-espace vectoriel de E et montrons que $F \subseteq G$ ou $G \subseteq F$. Pour cela, supposons, par absurde, que $F \not\subseteq G$ et $G \not\subseteq F$.

$$F \nsubseteq G \implies \exists x : x \in F \text{ et } x \notin G$$

 $F \not\subset G \implies \exists y : y \in G \text{ et } y \notin F$

 $F \cup G$ étant un sous-espace vectoriel, donc $x + y \in F \cup G$, par suite, on a

$$x + y \in F$$
 ou $x + y \in G$

Si $x + y \in F$, puisque y = (x + y) - x, alors $y \in F$, ce qui est absurde, car $y \notin F$.

Si $x + y \in G$, puisque x = (x + y) - y, alors $x \in G$, ce qui est encore absurde, car $x \notin G$.

Donc notre supposition de départ est fausse, par suite, $F\subseteq G$ ou $G\subseteq F.$

$$(\Leftarrow)$$
 Trivial.

Remarque 3

La proposition précédente se généralise à un nombre fini de sous-espaces vectoriels de E :

Proposition 1.2.4

Soient E un K-espace vectoriel quelconque et n un entier ≥ 2 . On suppose que K est un corps de caractéristique $\geq n$.

Soient F_1, F_2, \ldots, F_n des sous-espaces vectoriels de E, alors $F_1 \cup F_2 \cdots \cup F_n$ est un sous-espace vectoriel de E, si et seulement si, il existe $i \in \{1, 2, \ldots, n\}$, tel que pour tout $j \in \{1, 2, \ldots, n\}$, on a $F_j \subseteq F_i$.

 $D\'{e}monstration.$ (\iff) Trivial.

 (\Longrightarrow) On procède par récurrence sur $n \geq 2$.

Le cas n=2 est déjà vu, car tout corps est de caractéristique ≥ 2 . Supposons, donc que n>2 et que la proposition est vérifiée pour tout entier m< n. Soient F_1, F_2, \ldots, F_n des sous-espaces vectoriels de E, tel que $F_1 \cup F_2 \cdots \cup F_n$ soit un sous-espace vectoriel de E.

Supposons, par absurde, que pour tout $i \in \{1, 2, ..., n\}$, on a

 $\bigcup_{\substack{j=1\\j\neq i}}^n F_j \nsubseteq F_i, \text{ donc, en particuler, on a } \bigcup_{j=1}^{n-1} F_j \nsubseteq F_n. \text{ D'autre part, d'après}$

l'hypothèse de récurrence, on peut supposer que $F_n \nsubseteq \bigcup_{j=1}^{n-1} F_j$.

Soient $x \in F_n$ et $y \in \bigcup_{j=1}^{n-1} F_j$, tels que $x \notin \bigcup_{j=1}^{n-1} F_j$ et $y \notin F_n$.

$$(x \in F_n \text{ et } y \notin F_n) \Longrightarrow \forall \lambda \in K, \ \lambda x + y \notin F_n$$

Or, $\bigcup_{j=1}^{n} F_j$ est un sous-espace vectoriel de E, donc pour tout $\lambda \in K$,

on a $\lambda x + y \in \bigcup_{j=1}^{n} F_j$. Remarquons que si $\lambda x + y \in F_j$, pour un certain $j \in \{1, 2, \dots, n-1\}$, alors pour tout $\mu \neq \lambda$, $\mu x + y \notin F_j$, car sinon, on aura $x \in F_j$, ce qui est absurde. K est de caractéristique $\geq n$, donc l'ensemble $\{1_K, 21_K, \dots, (n-1)1_K\}$ est de cardinal n-1, par suite, d'après la remarque précédente, pour chaque $j \in \{1, 2, \dots, n-1\}$, il existe un unique λ_j , avec $\lambda_j \in \{1_K, 21_K, \dots, (n-1)1_K\}$, tel que,

 $\lambda_j x + y \in F_j$. Or $y \in \bigcup_{i=1}^{n-1} F_j$, donc il existe $j \in \{1, 2, \dots, n-1\}$, tel que, $y \in F_j$, donc $x \in F_j$, car $\lambda_j x + y \in F_j$ et $\lambda_j \neq 0$, ce qui est absurde, car $x \notin F_j$.

Somme

Soient E un K-espace vectoriel, F_1, F_2, \ldots, F_n des sous-espaces vectoriels de E, avec $n \geq 2$. On définit la partie de E, notée $F_1 + F_2 + \cdots + F_n$, par $x \in F_1 + F_2 + \cdots + F_n$, si et seulement si, il existe $(x_1, x_2, \ldots, x_n) \in F_1 \times F_2 \times \cdots \times F_n$, tel que $x = x_1 + x_2 + \cdots + x_n$

Proposition 1.2.5

 $F_1 + F_2 + \cdots + F_n$ est un sous-espace vectoriel de E, appelé sous-espace vectoriel somme des sous-espaces vectoriels F_1, F_2, \ldots, F_n .

Démonstration. La vérification que $F_1 + F_2 + \cdots + F_n$ est un sous-espace vectoriel est laissée à titre d'exercice.

Somme directe

Définition 1.2.2

Soient E un K-espace vectoriel et F_1, F_2, \ldots, F_n des sous-espaces vectoriels de E. On dit que la somme $F_1 + F_2 + \cdots + F_n$ est directe, si pour tout $x \in F_1 + F_2 + \cdots + F_n$, il existe **un unique** $(x_1, x_2, \ldots, x_n) \in F_1 \times F_2 \times \ldots \times F_n$, tel que $x = x_1 + x_2 + \cdots + x_n$.

Notations

Dans le cas où la somme $F_1 + F_2 + \cdots + F_n$ est directe, on la note,

$$F_1 \oplus F_2 \oplus \cdots \oplus F_n$$
 ou encore $\bigoplus_{i=1}^n F_i$

Lemme 1.2.1

La somme $F_1 + F_2 + \cdots + F_n$ est directe, si et seulement si, pour tout $(x_1, x_2, \dots, x_n) \in F_1 \times F_2 \times \dots \times F_n$, on a

$$x_1 + x_2 + \cdots + x_n = 0 \Longrightarrow x_1 = x_2 = \cdots = x_n = 0$$

Démonstration. (\Longrightarrow) Soit $(x_1, x_2, \dots, x_n) \in F_1 \times F_2 \times \dots \times F_n$, tel que $x_1 + x_2 + \dots + x_n = 0$. On doit vérifier que $x_1 = x_2 = \dots = x_n = 0$. Comme la somme est directe et puisque on a $0 = 0 + 0 + \dots + 0$, alors d'après l'unicité de la décomposition, on a $x_1 = x_2 = \dots = x_n = 0$.

(
$$\iff$$
) Soit $x \in F_1 + F_2 + \dots + F_n$, tel que $x = x_1 + x_2 + \dots + x_n$ et $x = y_1 + y_2 + \dots + y_n$. on doit alors montrer que $x_1 = y_1, x_2 = y_2, \dots, x_n = y_n$. $x = x_1 + x_2 + \dots + x_n$ et $x = y_1 + y_2 + \dots + y_n$, donc on aura

$$(x_1 - y_1) + (x_2 - y_2) + \dots + (x_n - y_n) = 0$$

par suite, si on pose $z_1 = x_1 - y_1$, $z_2 = x_2 - y_2$, ... et $z_n = x_n - y_n$, alors on aura

$$(z_1, z_2, \dots, z_n) \in F_1 \times F_2 \times \dots \times F_n$$
 et $z_1 + z_2 + \dots + z_n = 0$, donc, par hypothèse, on a $z_1 = z_2 = \dots = z_n = 0$.