Table des matières

Chap	oitre I : LA LUMIÈRE			
1.	MODÈLE GÉOMÉTRIQUE	1		
2. 2.1. 2.2.	MODÈLE ONDULATOIRE Concept d'onde La lumière, onde électromagnétique	3 3 4		
3.	MODÈLE CORPUSCULAIRE	6		
4.	CHOIX DU MODÈLE	7		
5. 5.1. 5.2.	SOURCES LUMINEUSES Émission de rayonnement par incandescence Émission de rayonnement par luminescence	8 8 11		
EXER Énonc Solutio		22		
Chapitre II : NOTIONS DE RADIOMÉTRIE ET DE PHOTOMÉTRIE				
1. 1.1. 1.2. 1.3. 1.4. 1.5.	GRANDEURS RADIOMÉTRIQUES ET PHOTOMÉTRIQUES Flux (ou puissance) Intensité Luminance Éclairement Grandeurs spectriques	27 27 27 30 32 32		
2. 2.1. 2.2. 2.3.	LIEN ENTRE LES GRANDEURS ET LES UNITÉS Définition de la candela, intensité énergétique, intensité lumineuse Visions photopique, scotopique et mésopique Grandeurs photoniques	33 33 34 37		
3. 3.1. 3.2. 3.3.	RELATIONS ENTRE GRANDEURS Intensité et éclairement : loi de Bouguer Luminance à l'intérieur d'un cône de demi-angle au sommet α Systèmes optiques	37 37 38 39		
4. 4.1. 4.2.		41 42 43		
EXER Énonc Solutio		50		

Chap	oitre III : INTERFÉRENCES À DEUX ONDES	
1. 1.1. 1.2.	SUPERPOSITION DE DEUX ONDES MONOCHROMATIQUES Différence de marche optique Intensité ou éclairement	57 58 58
2. 2.1. 2.2.	COHÉRENCE Cohérence spatiale et cohérence temporelle Condition d'observation d'interférences	59 59 61
3. 3.1. 3.2.	FRANGES D'INTERFÉRENCES Surfaces d'égale intensité Variation de l'intensité <i>I</i> en fonction de la position de M sur l'écran	62 63 64
4. 4.1. 4.2.	DEUX GRANDS TYPES DE SYSTÈMES INTERFÉRENTIELS Systèmes à division du front d'onde Systèmes à division d'amplitude	66 67 67
EXER Énonc Solutio		67
Chap	oitre IV : INTERFÉRENCES LOCALISÉES	
1. 1.1. 1.2. 1.3.	INTERFÉRENCES PAR LAME MINCE À FACES PARALLÈLES Influence d'une lame à faces parallèles sur une onde Figure d'interférence Traitement des surfaces	71 71 75 77
2. 2.1. 2.2. 2.3. 2.4.	INTERFÉRENCES PAR LAME D'ÉPAISSEUR VARIABLE Cadre de l'étude Lame de matière prismatique (coin de matière) Coin d'air défini par deux plans non parallèles Coin d'air défini par une surface plane et une surface sphérique	86 86 87 89 90
EXER Énonc Solutio		92
Chap	oitre V : DIFFRACTION	
1. 1.1. 1.2. 1.3.	GÉNÉRALITÉS SUR LA DIFFRACTION Présentation Principe de Huygens-Fresnel Diffraction de Fraunhofer	101 101 101 103

DIFFRACTION PAR UNE FENTE FINE Dispositif et conditions expérimentales Intensité lumineuse diffractée

2.

2.1.

2.2.

103

108

108

108

		III
3. 3.1. 3.2.	DIFFRACTION PAR UNE OUVERTURE CIRCULAIRE Dispositif et conditions expérimentales Intensité diffractée	110 110 112
4.	LIMITE DE RÉSOLUTION	114
EXEF Énond Solution		116
Chap	pitre VI : DIFFRACTION PAR UN RÉSEAU	
1. 1.1. 1.2.	GÉNÉRALITÉS Présentation, définitions Réseaux plans	125 125 126
2. 2.1. 2.2.	APPLICATION À LA SPECTROPHOTOMÉTRIE Dispositif et conditions expérimentales Caractérisations	134 134 134
3. 3.1. 3.2. 3.3.	RÉSEAUX BLAZÉS Intérêt et profil Conditions d'utilisation et intensité lumineuse diffractée Représentation graphique	138 138 138 139
EXEF Énond Soluti		141
Chap	pitre VII : POLARISATION	
1. 1.1. 1.2.	POLARISATION D'UNE ONDE ÉLECTROMAGNÉTIQUE Polarisation d'une onde électromagnétique plane monochromatique Différents états de polarisation	149 149 150
2. 2.1. 2.2. 2.3. 2.4.	LUMIERE POLARISÉE RECTILIGNEMENT Polarisation par dichroïsme Polarisation par diffusion Polarisation par réflexion vitreuse Polarisation par double réfraction	153 154 155 156 159
3. 3.1. 3.2. 3.3.	EXEMPLES D'APPLICATION Lunettes polarisantes Cinéma en relief Fenêtre de Brewster dans une cavité laser	159 159 159 160
EXEF Énond Soluti		160

Chapitre VIII : BIRÉFRINGENCE

BIRÉFRINGENCE NATURELLE	167
Milieux anisotropes	167
Lames cristallines à retard de phase	174
Polarisation rotatoire (ou biréfringence circulaire)	178
BIRÉFRINGENCE PROVOQUÉE	180
Contrainte mécanique	180
Contrainte électrique	181
Contrainte magnétique	184
RCICES cés ions	185
(Milieux anisotropes Lames cristallines à retard de phase Polarisation rotatoire (ou biréfringence circulaire) BIRÉFRINGENCE PROVOQUÉE Contrainte mécanique Contrainte électrique Contrainte magnétique RCICES cés