BL

1re et 2e années

Sylvain Rondy
Pierre Berlandi
Jean-Paul Huvelin
Pascal Mano
Gianfranco Niffoi
Anne-Sophie Pierson-Fertel
Nicolas Pierson

PRÉPAS SCIENCES

COLLECTION DIRIGÉE PAR BERTRAND HAUCHECORNE

FORMULAIRE MATHS

2e édition

Les 2 années en 1 clin d'œil

1. Sommes et produits

1. SOMMES ET PRODUITS

____ Somme des termes d'une suite constante ____

$$\forall a \in \mathbb{R}, \ \sum_{k=p}^{n} a = (n-p+1)a$$

___Somme des puissances des *n* premiers entiers__

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Somme géométrique_

$$\forall n \in \mathbb{N} , \sum_{k=0}^{n} q^{k} = \begin{cases} n+1 & \text{si } q=1\\ \frac{1-q^{n+1}}{1-q} & \text{si } q \neq 1 \end{cases}$$

Plus généralement : $\forall q \neq 1, \ \forall n \geq p, \ \sum_{k=p}^{n} q^k = q^p \frac{1 - q^{n-p+1}}{1 - q}$.

Distributivité et associativité

$$\forall \lambda \in \mathbb{R}$$
, $\sum_{k=1}^{n} \lambda x_k = \lambda \sum_{k=1}^{n} x_k$ (λ ne dépend pas de l'indice.)

$$\sum_{k=1}^{n} (x_k + y_k) = \sum_{k=1}^{n} x_k + \sum_{k=1}^{n} y_k$$

Changement d'indice

Soit deux entiers naturels n et p tels que $p \le n$.

Seuls les deux changements d'indice suivants sont autorisés :

• Changement d'indice : i = k + m (avec m entier)

$$\sum_{k=p}^{n} x_{k+m} = \sum_{i=p+m}^{n+m} x_i$$

• Changement d'indice : i = m - k (avec m entier supérieur ou égal à n)

$$\sum_{k=p}^{n} x_{m-k} = \sum_{i=m-n}^{m-p} x_{i}$$

Télescopage

Quels que soient les réels $x_0, ..., x_{n+1}$, on a :

$$\sum_{k=0}^{n} (x_{k+1} - x_k) = x_{n+1} - x_0$$

Interversion de sommes doubles_

Si les indices sont indépendants :

$$\sum_{(i,j)\in[[1,n]]\times[[1,m]]} x_{i,j} = \sum_{i=1}^{n} (\sum_{j=1}^{m} x_{i,j}) = \sum_{j=1}^{m} (\sum_{i=1}^{n} x_{i,j})$$

Si les indices sont dépendants :

$$\sum_{1 \le i \le j \le n} x_{i,j} = \sum_{i=1}^{n} \sum_{j=i}^{n} x_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{j} x_{i,j}$$

$$\sum_{1 \le i < j \le n} x_{i,j} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{i,j} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} x_{i,j}$$

Sommes et produits

____ Lien entre sommes simple et double__

Quels que soient les réels $x_1,...,x_n$, avec n élément de \mathbb{N}^* , on a :

$$\left(\sum_{k=1}^{n} x_k\right)^2 = \sum_{k=1}^{n} x_k^2 + 2\sum_{1 \le i < j \le n} x_i x_j$$

Factorielle

Pour tout entier naturel n, on appelle *factorielle* de n, et on note n!, l'entier naturel défini par 0!=1 et, pour tout entier naturel n

non nul :
$$n! = \prod_{k=1}^{n} k = 1 \times 2 \times ... \times n$$
.

Pour tout n de \mathbb{N}^* , on a : $n! = n \times (n-1)!$.

Produit de termes d'une suite constante___

$$\forall n \in \mathbb{N}^*, \ \prod_{k=1}^n \lambda = \lambda^n$$

Opérations compatibles avec \prod

$$\forall n \in \mathbb{N}^*, \prod_{k=1}^n (x_k y_k) = (\prod_{k=1}^n x_k) (\prod_{k=1}^n y_k)$$

Si aucun des y_k n'est nul, alors : $\prod_{k=1}^n \frac{x_k}{y_k} = \prod_{k=1}^n \frac{x_k}{x_k}$

Télescopage_

Si aucun des x_k n'est nul, on a :

$$\forall n \in \mathbb{N}, \ \prod_{k=0}^{n} \frac{x_{k+1}}{x_k} = \frac{x_{n+1}}{x_0}$$

2. ENSEMBLES

Comparaison d'ensembles

On dit que l'ensemble A est *inclus* dans l'ensemble B et on note $A \subset B$, lorsque tout élément de A est élément de B.

On dit que deux ensembles A et B sont égaux, on note A = B, lorsque l'on a : $A \subset B$ et $B \subset A$.

On dit que l'ensemble A est une partie de l'ensemble E (ou encore un sous-ensemble de E) lorsque A est inclus dans E.

L'ensemble de toutes les parties de E est noté $\mathcal{P}(E)$.

Intersection et réunion

L'intersection des ensembles A et B est l'ensemble, noté $A \cap B$, constitué des éléments qui sont à la fois dans A et dans B.

$$x \in A \cap B \Leftrightarrow x \in A \text{ et } x \in B$$

La *réunion* des ensembles A et B est l'ensemble, noté $A \cup B$, constitué des éléments qui sont dans l'un au moins des ensembles A ou B.

$$x \in A \cup B \Leftrightarrow x \in A \text{ ou } x \in B$$

Commutativité

L'intersection et la réunion sont commutatives :

$$A \cap B = B \cap A$$
 et $A \cup B = B \cup A$

Associativité

L'intersection et la réunion sont associatives :

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$
$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$

Les ensembles considérés dans la suite sont tous des parties d'un ensemble Ω .

Élément neutre

 Ω est élément neutre pour l'intersection : $A \cap \Omega = A$.

 \emptyset est élément neutre pour la réunion : $A \cup \emptyset = A$.

Inclusion, intersection et réunion

$$A \cap B \subset A$$
 et $A \subset A \cup B$

$$A \subset B \Leftrightarrow A \cap B = A$$
.
 $A \subset B \Leftrightarrow A \cup B = B$.

$$A \cap A = A \text{ et } A \cup A = A$$

Distributivité

L'intersection et la réunion sont distributives l'une sur l'autre :

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Complémentaire .

Le *complémentaire* de A est l'ensemble, noté \overline{A} , contenant les éléments de Ω qui ne sont pas dans A. On a : $x \in \overline{A} \Leftrightarrow x \notin A$.

On a:
$$\overset{=}{A} = A : \overline{\varnothing} = \Omega : \overline{\Omega} = \varnothing$$
.

 \overline{A} est la seule partie de Ω vérifiant : $A \cap \overline{A} = \emptyset$ et $A \cup \overline{A} = \Omega$.

$$A \subset B \Leftrightarrow \overline{B} \subset \overline{A}$$

Lois de Morgan _

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \text{ et } \overline{A \cup B} = \overline{A} \cap \overline{B}$$

Produit cartésien

On définit le *produit cartésien* des ensembles $A_1, A_2, ..., A_n$ par :

 $A_1 \times A_2 \times ... \times A_n = \{ (x_1, x_2, ..., x_n), \forall i \in [1, n], x_i \in A_i \}.$

Le produit $A \times A$ est noté A^2 .

_ Ensembles dénombrables, ensembles finis ____

On dit qu'un ensemble E est $d\acute{e}nombrable$ s'il existe une bijection de E sur \mathbb{N} .

Un ensemble E est dit fini s'il est vide ou s'il existe un entier naturel n non nul tel qu'il existe une bijection de E vers $[\![1,n]\!]$.

Le nombre n est appelé cardinal de E, noté card(E) ou $\mid E \mid$. On a $card(\emptyset) = 0$.

22

Les mathématiques peuvent être définies comme une science dans laquelle on ne sait jamais de quoi on parle ni si ce que l'on dit est vrai.

Bertrand Russel

3. APPLICATIONS

E, F et G désignent des ensembles.

_Fonctions et applications _____

Une fonction f de E dans (ou vers) F est un procédé qui permet d'associer certains éléments de E avec des éléments de F appelés leurs images, de telle façon que tout élément x de E possède au maximum une image y dans F.

Une application f de E dans F est une fonction de E dans F telle que tout élément de E possède exactement une image par f dans F. L'ensemble des applications de E dans F est noté $\mathcal{A}(E, F)$.

Identité

On appelle *identité* de E (ou *application identique* de E), l'application de E dans E, notée Id_E et définie par :

$$\forall x \in E, Id_E(x) = x$$

Restriction d'une application_

Soit f une application de E dans F et E' une partie de E. On appelle restriction de f à E', l'application notée $f_{|E|}$ définie par :

$$\forall x \in E', f_{\mid E'}(x) = f(x)$$

Composée d'applications

Soit f une application de E dans F et g une application de F dans G. On note $g \circ f$ (et on lit "g rond f") l'application de E dans G qui à tout élément x de E associe : $(g \circ f)(x) = g(f(x))$.

Lorsque les composées écrites ci-après existent, on a (associativité):

$$(f \circ g) \circ h = f \circ (g \circ h) = f \circ g \circ h$$

Si f est une application de E dans F, on a:

$$f \circ Id_E = Id_F \circ f = f$$

Image directe, image réciproque

Soit f une application de E dans F et A une partie de E. On appelle *image directe* de A par l'application f, l'ensemble f(A), défini par :

$$f(A) = \{ y \in F, \, \exists x \in A, \, y = f(x) \}$$

Soit *B* une partie de *F*. On appelle *image réciproque* de *B* par l'application f, l'ensemble, noté $f^{-1}(B)$, défini par :

$$f^{-1}(B) = \{x \in E, f(x) \in B\}$$

Injection_

Une application f de E dans F est *injective* (ou est une *injection*) si chaque élément de F admet au plus un antécédent dans E par f.

Une application f de E dans F est injective si, et seulement si :

$$\forall (x_1, x_2) \in E^2, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Surjection

Une application f de E dans F est *surjective* (ou est une *surjection*) si chaque élément de F admet au moins un antécédent dans E par f.

Une application f de E dans F est surjective si et seulement si :

$$\forall y \in F, \exists x \in E, y = f(x)$$

Bijection_

Une application f d'un ensemble E dans un ensemble F est une application bijective (on dit aussi une bijection) si elle est injective et surjective.

Une application f de E dans F est bijective si et seulement si :

$$\forall y \in F, \exists ! x \in E, y = f(x)$$

Une application f d'un ensemble E dans un ensemble F est une bijection de E dans F si, et seulement si, il existe une application g de F dans E telle que :

$$g \circ f = Id_E$$
 et $f \circ g = Id_F$