Delphine Delbarre Marie Warembourg

Prépas scientifiques 1^{re} et 2^e années Universités

Réussir en physique dans le supérieur

Les outils mathématiques indispensables

- · Cours détaillé
- Points de méthode
- Exercices et sujets d'examens corrigés
- · Applications en physique

Chapitre 1

Calculs vectoriels et systèmes de coordonnées

1.1 Mathématiques

Dans ce chapitre on se placera dans un espace E.

On note $\mathcal{B} = (\vec{\imath}, \vec{\jmath}, \vec{k})$ une base de E.

On note \mathcal{R} un repère de E déterminé par un point quelconque O, appelé origine du repère et les vecteurs $\vec{i}, \vec{j}, \vec{k}$.

Définitions

Une repère *orthogonal* est un système de 3 droites orthogonales non coplanaires qui se coupent en un point : l'origine du repère.

Pour que le repère soit *orthonormé*, on choisit les vecteurs \vec{i} , \vec{j} et \vec{k} sur chaque droite, de même longueur. Cette longueur sera l'unité de longueur du repère.

1.1.1 Rappel sur les vecteurs

Un vecteur non nul est caractérisé par sa norme, sa direction et son sens.

Un vecteur nul est un vecteur de norme nulle.

On notera \vec{u} et \vec{v} deux vecteurs de E et a et b deux réels.

• Règles de calcul

$$a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$$
$$a(b\vec{u}) = ab\vec{u}$$
$$(a+b)\vec{u} = a\vec{u} + b\vec{u}$$

· Coordonnées d'un vecteur

 \vec{u} se décompose de manière unique dans la base \mathcal{B} par $\vec{u} = u_i \vec{\imath} + u_j \vec{\jmath} + u_k \vec{k}$ avec u_i , u_j et u_k trois réels. Ce sont les coordonnées du vecteurs \vec{u} .

On notera que
$$\vec{u} = \begin{pmatrix} u_i \\ u_j \\ u_k \end{pmatrix}$$
.

Les coordonnées du point M dans le repère \mathcal{R} tel que $\vec{u} = \overrightarrow{OM}$ sont (u_i, u_j, u_k) . Si deux points A et B ont pour coordonnées (a_i, a_j, a_k) et (b_i, b_j, b_k) alors

$$\overrightarrow{AB} = \begin{pmatrix} b_i - a_i \\ b_j - a_j \\ b_k - a_k \end{pmatrix}$$

• Calcul de la norme d'un vecteur

Si le repère \mathcal{R} est orthonormé, on peut calculer la norme de \vec{u} à l'aide de la formule suivante :

$$\|\vec{u}\| = \sqrt{u_i^2 + u_j^2 + u_k^2}$$

• Vecteurs colinéaires

Deux vecteurs \vec{u} et \vec{v} sont colinéaires lorsqu'il existe un réel k tel que $\vec{u} = k\vec{v}$.

Définition: vecteurs colinéaires

 \vec{u} et \vec{v} sont colinéaires

si et seulement si

$$\exists (a, b) \in \mathbb{R}^2 - \{(0, 0)\} \text{ tel que } a \vec{u} + b \vec{v} = \vec{0}$$

Propriétés

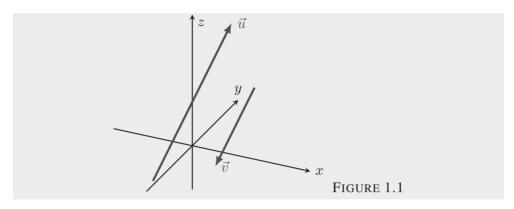
- Deux vecteurs colinéaires ont la même direction.
- Tous les vecteurs sont colinéaires au vecteur nul.

Avec des coordonnées

Leurs coordonnées dans un même repère sont proportionnelles.

Soient
$$\vec{u} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$. Les vecteurs \vec{u} et \vec{v} sont ils colinéaires?

On remarque que $\begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} = -2 \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix}$. Leurs coordonnées sont proportionnelles donc les vecteurs sont colinéaires.



• Vecteurs coplanaires

Trois vecteurs sont coplanaires si l'un d'eux peut s'écrire comme combinaison linéaire des deux autres.

Définition: vecteurs coplanaires

 \vec{u}, \vec{v} et \vec{w} sont coplanaires

si et seulement si

$$\exists\, (a,b,c)\in\mathbb{R}^3-\{(0,0,0)\} \text{ tel que } a\,\vec{u}+b\,\vec{v}+c\,\vec{w}=\vec{0}$$

Cas particuliers

Si l'un des trois vecteurs est le vecteur nul, les vecteurs sont coplanaires.

Soient
$$\vec{u}=\begin{pmatrix}2\\2\\4\end{pmatrix}$$
, $\vec{v}=\begin{pmatrix}1\\2\\2\end{pmatrix}$ et $\vec{w}=\begin{pmatrix}-1\\0\\-2\end{pmatrix}$. Les vecteurs \vec{u} , \vec{v} et \vec{w} sont ils coplanaires?

Cherchons a, b et c trois réels tels que $a \vec{u} + b \vec{v} + c \vec{w} = \vec{0}$.

$$a \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ -2 \end{pmatrix} = \vec{0} \Leftrightarrow \begin{cases} 2a + b - c &= 0 & (L_1) \\ 2a + 2b &= 0 & (L_2) \\ 4a + 2b - 2c &= 0 & (L_3) = 2(L_1) \end{cases}$$
$$\Leftrightarrow \begin{cases} 2a + b - c &= 0 \\ 2a + 2b &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} b &= -a \\ c &= a \end{cases}$$

Il y a donc des solutions pour a, b et c non nulles. Les vecteurs sont donc coplanaires.

Par exemple $\vec{u} - \vec{v} + \vec{w} = \vec{0}$.

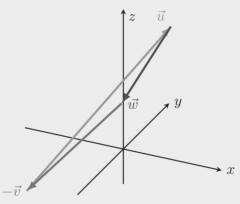


FIGURE 1.2

1.1.2 Changement de repères

Considérons deux repères de l'espace :

Le repère \mathcal{R} défini par son origine O et les vecteurs \vec{i} , \vec{j} et \vec{k} . Le repère \mathcal{R}' défini par son origine O' et les vecteurs $\vec{i'}$, $\vec{j'}$ et $\vec{k'}$.

On note (i'_i, i'_j, i'_k) , (j'_i, j'_j, j'_k) et (k'_i, k'_j, k'_k) les coordonnées des vecteurs $\vec{i'}$, $\vec{j'}$ et $\vec{k'}$ dans le repère \mathcal{R} et (O'_i, O'_j, O'_k) les coordonnées de O' dans le repère \mathcal{R} .

Soit M un point de coordonnées (M_i, M_j, M_k) dans \mathcal{R} . Cherchons ses coordonnées $(\underline{M}_i, M_j, \underline{M}_k)$ dans \mathcal{R}' .

On a:

$$\overrightarrow{O'M} = \underline{M_i} \, \overrightarrow{i'} + \underline{M_j} \, \overrightarrow{j'} + \underline{M_k} \, \overrightarrow{k'}$$

Ainsi, on obtient le système suivant :

$$\begin{cases} \mathbf{M}_i - \mathbf{O}_i' = & \underline{\mathbf{M}}_i i_i' + \underline{\mathbf{M}}_j j_i' + \underline{\mathbf{M}}_k k_i' \\ \mathbf{M}_j - \mathbf{O}_j' = & \underline{\mathbf{M}}_i i_j' + \underline{\mathbf{M}}_j j_j' + \underline{\mathbf{M}}_k k_j' \\ \mathbf{M}_k - \mathbf{O}_k' = & \underline{\mathbf{M}}_i i_k' + \underline{\mathbf{M}}_j j_k' + \underline{\mathbf{M}}_k k_k' \end{cases}$$

La résolution du système permet d'obtenir les coordonnées de M dans le repère \mathcal{R}' .

1.1.3 Produits scalaires

Nous aborderons dans ce chapitre différentes approches du produit scalaire ainsi que ses propriétés.

• Définition

Le produit scalaire de deux vecteurs \vec{u} et \vec{v} se note $\vec{u} \cdot \vec{v}$ et est défini par :

$$\vec{u} \cdot \vec{v} = \begin{cases} & \|\vec{u}\| \times \|\vec{v}\| \times \cos{(\vec{u}, \vec{v})} \text{ si les vecteurs ne sont pas nuls} \\ & 0 \text{ si l'un des deux vecteurs est nul} \end{cases}$$

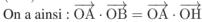
Calcul du produit scalaire en utilisant des coordonnées

On considère \vec{u} et \vec{v} deux vecteurs de coordonnées (u_i, u_j, u_k) et (v_i, v_j, v_k) .

$$\vec{u} \cdot \vec{v} = u_i \cdot v_i + u_j \cdot v_j + u_k \cdot v_k$$

• Calcul du produit scalaire en utilisant des projections

On peut calculer le produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$ en utilisant le projeté orthogonal H de B sur (OA).



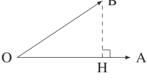


FIGURE 1.3

On a donc:

- * Si \overrightarrow{OA} et \overrightarrow{OB} sont de même sens alors $\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OH$
- * Si \overrightarrow{OA} et \overrightarrow{OB} sont de sens contraires alors $\overrightarrow{OA} \cdot \overrightarrow{OB} = -OA \times OH$

Propriétés

Pour tout vecteur \vec{u} , \vec{v} et \vec{w} , on a :

$$\vec{u} \cdot \vec{u} = \|\vec{u}\|^2$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

Application

On utilise principalement le produit scalaire pour monter que deux vecteurs sont orthogonaux.

On dit que deux vecteurs sont orthogonaux, noté $\vec{u} \perp \vec{v}$, si l'une de ces propositions est vérifiée :

$$\left\{ \begin{array}{l} \text{l'un des vecteurs est nul} \\ (\vec{u},\vec{v}\,) = \frac{\pi}{2} \left[2\pi\right] \\ (\vec{u},\vec{v}\,) = -\frac{\pi}{2} \left[2\pi\right] \end{array} \right.$$

 \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Définition

Un repère $(O, \vec{\imath}, \vec{\jmath}, \vec{k}\,)$ orthogonal est un repère tel que $\vec{\imath}, \vec{\jmath}$ et \vec{k} sont orthogonaux entre eux.

Si de plus, $\|\vec{\imath}\| = \|\vec{\jmath}\| = \|\vec{k}\| = 1$, on dit que le repère est orthonormé.

• Application : détermination de l'équation cartésienne d'un cercle On considère un cercle C de centre O(a,b) et de rayon R.

On note [AB] un diamètre de ce cercle.

Pour tout point M(x,y) du cercle, on sait que les vecteurs \overrightarrow{AM} et \overrightarrow{BM} sont orthogonaux.

On a donc : $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$. Ainsi en utilisant les coordonnées des vecteurs \overrightarrow{AM} et \overrightarrow{BM} on trouve l'équation cartésienne d'un cercle.

On prend arbitrairement A (a - R, b) et B (a + R, b).

On a alors

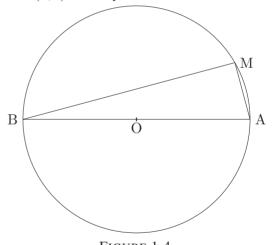


Figure 1.4

$$\overrightarrow{AM} \cdot \overrightarrow{BM} = (x - a + R)(x - a - R) + (y - b)^2 = 0$$
$$(x - a)^2 + (y - b)^2 = R^2$$

L'équation cartésienne d'un cercle de centre (a,b) et de rayon R s'écrit :

$$(x-a)^2 + (y-b)^2 = R^2$$

1.1.4 Produits vectoriels

On se placera dans ce chapitre dans un repère $(O, \vec{r}, \vec{j}, \vec{k})$ orthonormé direct. C'est à dire qu'un observateur placé le long de \vec{k} , les pieds en O, regardant dans la direction \vec{i} a \vec{j} à sa gauche.

Définition

Le produit vectoriel de deux vecteurs \vec{u} et \vec{v} que l'on note $\vec{u} \wedge \vec{v}$ est défini par :

- * Si \vec{u} et \vec{v} sont colinéaires alors $\vec{u} \wedge \vec{v} = \vec{0}$.
- * Si \vec{u} et \vec{v} ne sont pas colinéaires alors :

$$\vec{u} \wedge \vec{v} \text{ est un vecteur qui vérifie} \left\{ \begin{array}{l} \vec{u} \wedge \vec{v} \text{ est orthogonal à } \vec{u} \text{ et à } \vec{v} \\ (\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}) \text{ est une base directe} \\ \|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \times \|\vec{v}\| \times \widehat{\sin(\vec{u}, \vec{v})} \end{array} \right.$$

• Calcul du produit vectoriel en utilisant les coordonnées

On rappelle que l'on travaille avec une base orthonormée directe. On considère \vec{u} et \vec{v} deux vecteurs de coordonnées (u_i, u_j, u_k) et (v_i, v_j, v_k) .

$$\vec{u} \wedge \vec{v} = (u_j \cdot v_k - u_k \cdot v_j) \vec{i} + (u_k \cdot v_i - u_i \cdot v_k) \vec{j} + (u_i \cdot v_j - u_j \cdot v_i) \vec{k}$$

Propriétés

Pour tout vecteur \vec{u} , \vec{v} et \vec{w} et tout réel a et b,

$$\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}$$
$$(a \vec{v} + b \vec{w}) \wedge \vec{u} = a \vec{v} \wedge \vec{u} + b \vec{w} \wedge \vec{u}$$
$$\vec{u} \wedge (a \vec{v} + b \vec{w}) = a \vec{u} \wedge \vec{v} + b \vec{u} \wedge \vec{w}$$

Application

On utilise principalement le produit vectoriel pour monter que deux vecteurs sont colinéaires.

$$\vec{u}$$
 et \vec{v} sont colinéaires $\Leftrightarrow \vec{u} \wedge \vec{v} = \vec{0}$

Remarque : le vecteur nul est le seul vecteur colinéaire à tous les autres.

1.1.5 Produits mixtes

On se placera dans ce chapitre dans un repère $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$.

Définition

Le produit mixte de 3 vecteurs \vec{u} , \vec{v} et \vec{w} est le nombre réel $[\vec{u}, \vec{v}, \vec{w}]$ défini par :

$$[\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \wedge \vec{w})$$

• Calcul du produit mixte en utilisant des coordonnées

On considère \vec{u} , \vec{v} et \vec{w} trois vecteurs de coordonnées (u_i, u_j, u_k) , (v_i, v_j, v_k) et (w_i, w_j, w_k) .

$$\left[ec{u},ec{v},ec{w}
ight] = \left|egin{array}{ccc} u_i & v_i & w_i \ u_j & v_j & w_j \ u_k & v_k & w_k \end{array}
ight|$$

De manière générale, le déterminant d'une matrice 3×3 , s'écrit :

$$\left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = aei + dhc + bfg - (gec + dbi + ahf)$$

• Application

On utilise principalement le produit mixte pour montrer que trois vecteurs sont coplanaires.

$$\vec{u}, \vec{v}$$
 et \vec{w} sont coplanaires $\Leftrightarrow [\vec{u}, \vec{v}, \vec{w}] = 0$

Remarque : En particulier le produit mixte est nul si deux des trois vecteurs sont colinéaires.

1.1.6 Barycentre

Définitions

Points pondérés

On appelle point pondéré tout couple (A, a) avec A un point et a un réel.

• Barycentre de deux points

Soient A et B deux points de l'espace et a et b deux réels dont la somme n'est pas nulle.

On appelle barycentre des points pondérés (A,a) et (B,b) l'unique point G tel que $a\overrightarrow{GA}+b\overrightarrow{GB}=\vec{0}$.