

Michel Goumi
Nicolas Jousse
Ivan Gozard
Bertrand Hauchecorne
Olivier Leuck

PRÉPAS SCIENCES

COLLECTION DIRIGÉE PAR BERTRAND HAUCHECORNE

MATHS

4e édition

- Objectifs
- Cours résumé
- Méthodes
- Vrai/faux, erreurs classiques
- Exercices de base et d'approfondissement
- Sujets de concours (écrits, oraux)
- Corrigés détaillés et commentés

Compléments sur les espaces vectoriels et les endomorphismes

IN MATHÉMATICIEN

Très jeune, **Giuseppe Peano** (1858-1932) a compris l'importance de la nouvelle approche des mathématiques que permettait la théorie des ensembles à peine naissante. Déchiffrant l'ouvrage plutôt obscur d'Hermann Grassmann dans lequel sont introduits les espaces vectoriels, il bâtit une axiomatique claire encore utilisée de nos jours. Il introduit les applications linéaires et montre que cette théorie ne se limite pas à la dimension finie en donnant l'exemple des polynômes.

Un peu d'histoire

À tout nombre réel *a*, on peut faire correspondre une application toute simple, celle qui à un réel *x* fait correspondre *ax* soit la multiplication d'un nombre par un scalaire. Tout segment est alors transformé en un segment dont la longueur est multipliée par *a*. La variable *x* est au premier degré, elle n'est pas affectée d'une puissance.

Les applications linéaires en sont la généralisation aux dimensions supérieures; l'expression des images est une expression de degré un des coordonnées et elles conservent l'origine.

Le maniement de ce type d'applications s'est particulièrement développé au XVIII^e siècle en particulier pour résoudre des systèmes linéaires, avec Gabriel Cramer, Étienne Bézout, Alexandre Vandermonde mais leur introduction formelle est l'œuvre de Peano.

■ Objectifs

les incontournables

- ▶ Revoir et enrichir les notions élémentaires concernant les espaces vectoriels : famille libre, famille génératrice, base, dimension...;
- ▶ revoir et enrichir les notions élémentaires concernant les applications linéaires;
- ightharpoonup découvrir le produit d'espaces vectoriels et étendre les notions de somme et de somme directe à n sous-espaces vectoriels;
- ▶ vérifier sa capacité à déterminer le rang d'une famille de vecteurs ou d'une application linéaire et à utiliser le théorème du rang ;
- ▶ découvrir la notion de sous-espace vectoriel stable par un endomorphisme et d'endomorphisme induit sur un tel sous-espace vectoriel;
- ▶ découvrir la notion de polynômes et de polynômes annulateurs d'un endomorphisme ;
- ▶ découvrir l'interpolation de Lagrange.

■ et plus si affinités

- ▶ S'approprier définitivement la notion de somme directe d'une famille finie de sous-espaces vectoriels : elle sera centrale par la suite ;
- ▶ s'approprier définitivement la notion, elle aussi centrale, d'endomorphisme induit sur un sous-espace vectoriel stable;
- ▶ approfondir les questions d'existence, en dimension finie, d'une base, d'un supplémentaire pour tout sous-espace vectoriel, etc.

■■ Résumé de cours

 \mathbb{K} désigne indifféremment l'un des corps \mathbb{R} ou \mathbb{C} et E est un \mathbb{K} -espace vectoriel.

■ Familles libres, familles génératrices, bases

Définition : Combinaison linéaire —. On appelle combinaison linéaire d'un nombre fini de vecteurs x_1, x_2, \ldots, x_n de E toute somme $\sum_{i=1}^n \lambda_i x_i$, où $\lambda_1, \lambda_2, \ldots, \lambda_n$ sont des scalaires (des éléments de \mathbb{K}), appelés coefficients de la combinaison linéaire.

Proposition 1.1.— Sous-espace vectoriel engendré par une famille —. L'ensemble des combinaisons linéaires finies d'une famille X de vecteurs est un sous-espace vectoriel de E, appelé sous-espace vectoriel engendré par X et noté Vect(X).

Remarque : Vect (X) est le plus petit sous-espace vectoriel de E, au sens de l'inclusion, contenant la famille X.

Définition : Famille libre, famille liée —. \blacktriangleright $(x_i)_{i \in [\![1,n]\!]}$, famille finie de vecteurs de E, est libre si, et seulement si, quelle que soit la famille $(\lambda_i)_{i \in [\![1,n]\!]} \in \mathbb{K}^n$,

$$\sum_{i=1}^{n} \lambda_i x_i = 0_E \Longrightarrow \forall i \in [1, n], \ \lambda_i = 0.$$

- ▶ $(x_i)_{i \in I}$, famille de vecteurs de E de cardinal quelconque, est **libre** si, et seulement si, toutes ses sous-familles finies sont libres.
- ▶ Les x_i , $i \in I$, sont linéairement indépendants s_i , et seulement s_i , la famille $(x_i)_{i \in I}$ est libre.
- ▶ Si une famille n'est pas libre, on dit qu'elle est liée.

 $\textbf{Propriétés:} \; \rhd \; \text{Toute famille contenue dans une famille libre est libre.}$

De Toute famille contenant une famille liée est liée (contraposition de l'implication précédente). En particulier, toute famille contenant le vecteur nul est liée.

Exemple: Si $\deg(P_0) < \deg(P_1) < \cdots < \deg(P_n)$, la famille finie de polynômes non nuls à coefficients dans \mathbb{K} , (P_0, P_1, \dots, P_n) , est dite de degrés échelonnés. Une telle famille est libre.

Proposition 1.2.— Famille liée et combinaison linéaire —. Une famille $(x_i)_{i \in I}$ est liée si, et seulement si, l'un au moins des x_i est combinaison linéaire des autres.

 (x_1, x_2) est liée si, et seulement si, il existe un scalaire λ tel que : $x_1 = \lambda x_2$ ou $x_2 = \lambda x_1$, et on dit alors que x_1 et x_2 sont **colinéaires**.

 (x_1, x_2, x_3) est liée si, et seulement si, il existe deux scalaires λ et μ tels que : $x_1 = \lambda x_2 + \mu x_3$ ou $x_2 = \lambda x_1 + \mu x_3$ ou $x_3 = \lambda x_1 + \mu x_2$, et on dit alors que x_1 , x_2 et x_3 sont **coplanaires**.

Définition: Famille génératrice —. Une partie X de E est une famille génératrice de l'espace vectoriel E si, et seulement si, le sous-espace vectoriel qu'elle engendre est E lui-même (autrement dit, Vect X = E).

Définition : Base —. Une famille de vecteurs du \mathbb{K} -espace vectoriel E est une **base** de cet espace vectoriel si, et seulement si, elle est une famille libre et génératrice.

Exemples: \triangleright $(X^n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$. $(X^i)_{i\in[0,n]}$ est une base de $\mathbb{K}_n[X]$. \triangleright ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 .

Ces bases sont les plus simples de chacun de ces espaces vectoriels : on dit que ce sont leurs bases canoniques respectives.

Proposition 1.3.— Coordonnées d'un vecteur dans une base —. Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E. Pour tout vecteur x de E, il existe un n-uplet unique $(\lambda_1, \lambda_2, \dots, \lambda_n)$ de \mathbb{K}^n tel que :

$$x = \sum_{i=1}^{n} \lambda_i \, e_i.$$

 $(\lambda_1, \lambda_2, \cdots, \lambda_n)$ est le n-uplet des coordonnées du vecteur x dans la base $\mathscr B$ et

 $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$

est la matrice colonne des coordonnées du vecteur x dans la base \mathscr{B} .

Exemple : Les coordonnées d'un polynôme de degré inférieur ou égal à n dans la base canonique de $\mathbb{K}_n[X]$ sont ses coefficients.

■ Dimension

Définition : Espace vectoriel de dimension finie —. Un espace vectoriel est de dimension finie si, et seulement si, il admet une famille génératrice finie.

Proposition 1.4.— Théorèmes de la base extraite et de la base incomplète —. Soit E un \mathbb{K} -espace vectoriel non nul de dimension finie.

De toute famille génératrice de E, on peut extraire une base de E; par conséquent, E admet une base finie.

Toute famille libre de E peut être complétée en une base de E.

Lemme 1.5.— Dans un espace vectoriel de dimension finie, une famille libre ne peut avoir plus d'éléments qu'une famille génératrice.

Théorème-Définition 1.6.— Théorème de la dimension —. Toutes les bases d'un espace vectoriel E de dimension finie ont le même nombre d'éléments, appelé dimension de E et noté dim E. Par convention, la dimension de $\{0_E\}$ est E.

Proposition 1.7.— Si dim E = n et si \mathcal{F} est une famille de n vecteurs de E, alors il y a équivalence entre :

(1) \mathcal{F} est une base de E (2) \mathcal{F} est une famille libre (3) \mathcal{F} est une famille génératrice de E.

Définition : Rang d'une famille finie de vecteurs —. Le rang d'une famille finie \mathcal{F} de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. On le note $\operatorname{rg} \mathcal{F}$.

■■ 4 CHAPITRE 1

Proposition 1.8.— Une famille finie de vecteurs est libre si, et seulement si, son cardinal est égal à son rang.

■ Produit, somme et somme directe d'espaces vectoriels

Produit d'espaces vectoriels

Définition : Produit cartésien —. Le produit cartésien de deux ensembles A et B est l'ensemble, $noté\ A \times B$, défini par :

 $A \times B = \{(u, v) \mid u \in A \text{ et } v \in B\}$

Le produit cartésien de n ensembles A_1,A_2,\ldots,A_n est l'ensemble, noté $\prod_{i=1}^n A_i$ défini par : $\prod_{i=1}^n A_i = \left\{ (u_1,u_2,\ldots,u_n) \mid \forall \, i \in \llbracket 1,n \rrbracket, \, u_i \in A_i \right\}$

$$\prod_{i=1}^{n} A_i = \{(u_1, u_2, \dots, u_n) \mid \forall i \in [1, n], u_i \in A_i\}$$

Soit (E, +, .) et $(F, \hat{+}, \hat{.})$ deux \mathbb{K} -espaces vectoriels :

Théorème-Définition 1.9.— Produit de deux sous-espaces vectoriels —.

Si on pose :
$$\begin{cases} \forall (u,v) \in E \times F, \forall (u',v') \in E \times F, (u,v) + (u',v') = (u+v,u'+v') \\ \forall (u,v) \in E \times F, \forall \lambda \in \mathbb{K}, \lambda \cdot (u,v) = (\lambda \cdot u,\lambda \cdot v) \end{cases},$$
 alors $(E \times F, +, \cdot)$ est un \mathbb{K} -espace vectoriel, dit **espace vectoriel produit de** E **et** F .

Proposition 1.10.— Dimension du produit de deux espaces vectoriels —. Si E et F sont deux K-espaces vectoriels de dimensions respectives n et p, alors $E \times F$ est de dimension n+p.

Soit (E_1, E_2, \dots, E_p) une famille finie de \mathbb{K} -espaces vectoriels. On suppose, pour simplifier, que sur chaque E_i , l'addition et la multiplication externe sont notées par les mêmes symboles : + pour l'addition et la simple juxtaposition pour la multiplication externe.

$$\begin{aligned} & \text{Th\'eor\`eme-D\'efinition 1.11.} \quad \text{Produit de } p \text{ sous-espaces vectoriels} \longrightarrow \\ & \text{Si}: \left\{ \begin{array}{l} \forall \, (u_i)_{i \in \llbracket 1,p \rrbracket} \in \prod_{i=1}^p E_i, \, \forall \, (u_i')_{i \in \llbracket 1,p \rrbracket} \in \prod_{i=1}^p E_i, \, (u_i)_{i \in \llbracket 1,p \rrbracket} + (u_i')_{i \in \llbracket 1,p \rrbracket} = (u_i + u_i')_{i \in \llbracket 1,p \rrbracket} \\ \forall \, (u_i)_{i \in \llbracket 1,p \rrbracket} \in \prod_{i=1}^p E_i, \, \forall \, \lambda \in \mathbb{K}, \, \lambda \, (u_i)_{i \in \llbracket 1,p \rrbracket} = (\lambda \, u_i)_{i \in \llbracket 1,p \rrbracket} \\ \text{alors} \left(\prod_{i=1}^p E_i, +, \, \right) \text{ est un } \mathbb{K}\text{-espace vectoriel, dit } \textit{espace vectoriel produit des } E_i. \end{aligned} \right.$$

Proposition 1.12. Dimension du produit de p espaces vectoriels —. Si (E_1, E_2, \dots, E_p) est une famille de K-espaces vectoriels de dimensions respectives n_1, n_2, \ldots, n_p , alors

$$\dim \left(\prod_{i=1}^{p} E_i\right) = \sum_{i=1}^{p} n_i.$$

Somme de sous-espaces vectoriels

Théorème-Définition 1.13.— **Somme** —. Soit $(E_i)_{i \in [\![1,n]\!]}$ une famille finie de sous-espaces vectoriels de E, $\left\{\sum_{i=1}^n x_i, \text{ où, } \forall i \in [\![1,n]\!], \, x_i \in E_i \right\}$ est un sous-espace vectoriel de E.

Il est noté $\sum_{i=1}^{n} E_i$ et c'est la somme des sous-espaces vectoriels $(E_i)_{i \in [\![1,n]\!]}$.

Somme directe de sous-espaces vectoriels

Définition : Somme directe —. La somme des sous-espaces vectoriels de la famille $(E_i)_{i\in \llbracket 1,n\rrbracket}$ est directe si, et seulement si, tout vecteur x de $\sum_{i=1}^n E_i$ se décompose de manière unique sous la forme : $x=\sum_{i=1}^n x_i,\ où\ (x_i)_{i\in \llbracket 1,n\rrbracket}\in E_1\times E_2\times \cdots \times E_n.$

Dans ce cas là, on note la somme de ces sous-espaces vectoriels : $\bigoplus_{i=1}^{n} E_i$.

Proposition 1.14.— Caractérisation d'une somme directe —. La somme des sous-espaces vectoriels de la famille $(E_i)_{i \in [\![1,n]\!]}$ est directe si, et seulement si,

$$\forall (x_1, x_2, \dots, x_n) \in E_1 \times E_2 \times \dots \times E_n, \left(\sum_{i=1}^n x_i = 0_E \Longrightarrow \forall i \in [1, n], x_i = 0_E \right).$$

Commentaire: La somme de deux sous-espaces vectoriels de E est directe si, et seulement si, leur intersection est réduite à $\{0_E\}$.

En revanche, si $n \ge 3$, il ne suffit pas que les intersections deux à deux des E_i soient réduites à $\{0_E\}$, pour que la somme des E_i soit directe. (Voir la réponse à la question 5 du Vrai-Faux)

Définition : Sous-espaces vectoriels supplémentaires —. Deux sous-espaces vectoriels F et G de E sont **supplémentaires dans** E si, et seulement si, leur somme est directe et égale à E, autrement dit, lorsque : $E = F \oplus G$.

Théorème-Définition 1.15.— Base adaptée à un sous-espace vectoriel —. Si (e_1, e_2, \ldots, e_p) est une base d'un sous-espace vectoriel F d'un \mathbb{K} -espace vectoriel E de dimension n, alors il existe une base de E de la forme $(e_1, e_2, \ldots, e_p, e_{p+1}, \ldots, e_n)$.

Une telle base est une base de E adaptée au sous-espace vectoriel F.

Commentaire: En dimension finie, tout sous-espace vectoriel admet donc un supplémentaire, puisque $\text{Vect}(e_{p+1},\ldots,e_n)$ est un sous-espace vectoriel supplémentaire de F dans E.

Proposition 1.16.— Les sous-espaces vectoriels $(E_i)_{i \in [\![1,n]\!]}$ de E constituent une décomposition en somme directe de E si, et seulement si, $E = \bigoplus_{i=1}^n E_i$, ou, ce qui est équivalent :

$$\forall x \in E, \exists ! (x_i)_{i \in [1,n]} \in E_1 \times E_2 \times \cdots \times E_n \text{ tel que } x = \sum_{i=1}^n x_i.$$

■■ 6 CHAPITRE 1

Proposition 1.17.— Décomposition en somme directe en fractionnant une base —. Si on fractionne une base $(e_1, e_2, \dots, e_p, e_{p+1}, \dots, e_n)$ de E, on obtient :

$$E = \mathsf{Vect}(e_1, e_2, \dots, e_p) \oplus \mathsf{Vect}(e_{p+1}, \dots, e_n).$$

Plus généralement, si on fractionne une base \mathscr{B} de E en une partition $(\mathscr{B}_1, \mathscr{B}_2, \dots, \mathscr{B}_k)$, alors

$$E = \bigoplus_{i=1}^k \operatorname{Vect}(\mathscr{B}_i).$$

On a ainsi une caractérisation du caractère directe de la somme de n sous-espaces vectoriels :

Théorème-Définition 1.18.— Base adaptée à une décomposition en somme directe —.

 $(E_i)_{i\in \llbracket 1,n\rrbracket}$ est une famille de n sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie, les \mathscr{B}_i , $1 \leq i \leq n$, sont des bases respectives des E_i , $1 \leq i \leq n$, et \mathscr{B} est la famille obtenue en juxtaposant (on dit aussi en concaténant) les vecteurs des familles \mathcal{B}_i .

La somme des $(E_i)_{i \in [\![1,n]\!]}$ est directe si, et seulement si, \mathscr{B} est une base de $\bigoplus_{i=1}^{} E_i$. Dans ce cas, \mathscr{B} est dite base de E adaptée à cette décomposition.

■ Sous-espaces-vectoriels en dimension finie

Proposition 1.19.— Tout sous-espace vectoriel F d'un espace vectoriel de dimension finie E est de dimension finie et dim $F \leq \dim E$.

De plus, si dim $F = \dim E$, alors F = E.

Proposition 1.20.— Caractérisation d'une somme directe par les dimensions —. Si E_1, E_2, \ldots E_p sont des sous-espaces de dimension finie, alors :

$$\dim\left(\sum_{i=1}^{p} E_i\right) \leqslant \sum_{i=1}^{p} \dim E_i$$

avec égalité si, et seulement si, la somme est directe.

Corollaire 1.21.— Décomposition en somme directe en dimension finie —. En dimension finie,

 $E = \bigoplus E_i$ si, et seulement si, **deux des trois** propositions suivantes sont vérifiées :

(i)
$$E = \sum_{i=1}^{n} E_i$$
;

(ii) dim
$$E = \sum_{i=1}^{n} \dim E_i$$
;

(ii) dim
$$E = \sum_{i=1}^{n} \dim E_i$$
; (iii) la somme $\sum_{i=1}^{n} E_i$ est directe.

Corollaire 1.22.— Dimension de la somme de deux sous-espaces vectoriels —. Soit F et Gdeux sous-espaces vectoriels d'un espace vectoriel de dimension finie E:

$$\dim (F + G) = \dim F + \dim G - \dim (F \cap G).$$

■ Applications linéaires

E et F sont deux \mathbb{K} -espaces vectoriels.

Définition : Une application u de E dans F est dite **linéaire** si elle vérifie :

$$\forall (x,y) \in E^2, \forall \lambda \in \mathbb{K}, u(\lambda x + y) = \lambda u(x) + u(y).$$

Notations et vocabulaire : \triangleright On note $\mathscr{L}(E,F)$ le \mathbb{K} -espace vectoriel des applications linéaires de E dans F. Lorsque E et F sont de dimensions finies, $\dim \mathscr{L}(E,F) = \dim E \times \dim F$.

 \triangleright Une application linéaire de E dans E est un **endomorphisme** de E. Leur ensemble est l'espace vectoriel $\mathscr{L}(E)$.

 \triangleright Une application linéaire de E dans \mathbb{K} est une **forme linéaire** sur E.

 \triangleright Une application linéaire de E dans F bijective est un **isomorphisme** de E dans F. Un endomorphisme de E bijectif est un **automorphisme** de E. L'ensemble des automorphismes de E est noté $\mathrm{GL}(E)$ et appelé **groupe linéaire de** E.

 \triangleright Deux espaces vectoriels sont isomorphes si, et seulement si, il existe un isomorphisme de l'un dans l'autre.

Proposition 1.23.— Détermination d'une application linéaire par l'image d'une base —. Étant donné deux \mathbb{K} -espaces vectoriels E et F et une base (e_1, e_2, \dots, e_p) de E, une application linéaire u de E dans F est entièrement déterminée par la donnée des $u(e_j)$, pour $j \in [1, p]$.

Proposition 1.24.— Application linéaire et supplémentaires —. Une application linéaire définie sur $E = E_1 \oplus E_2$ est entièrement déterminée par ses restrictions à E_1 et E_2 .

■ Sous-espaces stables

Définition : Un sous-espace vectoriel F de E est **stable par un endomorphisme** u **de** E lorsque

$$u(F) \subset F$$

Dans ce cas, l'application \hat{u} définie par : $\left\{ \begin{array}{ccc} F & \longrightarrow & F \\ x & \longmapsto & \hat{u}(x) = u(x) \end{array} \right.$ est **l'endomorphisme de** F induit par u.

■ Noyau, image

Théorème-Définition 1.25.— Noyau d'une application linéaire —. Si $u \in \mathcal{L}(E,F)$, l'ensemble $\{x \in E \mid u(x) = 0_F\}$ est un sous-espace vectoriel de E appelé noyau de u et noté Ker u. $u \in \mathcal{L}(E,F)$ est injective si, et seulement si, son noyau est réduit à $\{0_E\}$.

L'image d'une famille libre par une application linéaire injective est une famille libre.

Théorème-Définition 1.26.— Image d'une application linéaire —. Si $u \in \mathcal{L}(E,F)$, l'ensemble $\{u(x), x \in E\}$ est un sous-espace vectoriel de F appelé image de u et noté Im u. u est surjective si, et seulement si, Im u = F.

L'image d'une famille génératrice par une application linéaire surjective est une famille génératrice.

Remarque : Si les endomorphismes u et v commutent, alors $\operatorname{Im} u$ et $\operatorname{Ker} u$ sont stables par v et, symétriquement, $\operatorname{Im} v$ et $\operatorname{Ker} v$ sont stables par u.

■■ 8 CHAPITRE 1