

L'ESSENTIEL Pour progresser

mathématiques au lycée





# Suites numériques, modèles discrets



Un conseil : revoir le cours sur les suites de la classe de première !

## Quelques rappels de première

Une suite  $(u_n)$  est **arithmétique** de **raison** a si et seulement si pour tout naturel n,  $u_{n+1} = u_n + a$  (ici, la suite est donnée par une formule de récurrence).

 $(u_n)$  est **arithmétique** de **raison** a si et seulement si pour tout naturel n,  $u_n = u_0 + na$  (ici, la suite est donnée par une formule explicite).

Pour tout entier naturel n, on a :  $1 + 2 + ... + n = \frac{n(n+1)}{2}$ 

Une suite  $(u_n)$  est **géométrique** de **raison** q si et seulement si pour tout naturel n,  $u_{n+1} = u_n \times q$  (ici, la suite est donnée par une formule de récurrence).

 $(u_n)$  est **géométrique** de **raison** q si et seulement si pour tout naturel n,  $u_n = u_0 \times q^n$  (ici, la suite est donnée par une formule explicite).

Pour tout réel q (avec  $q \ne 1$ ), on a :  $1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$ 

#### Savoir faire

Pour montrer qu'une suite  $(u_n)$  est géométrique de raison q, on essaie en général de prouver la relation de récurrence  $u_{n+1} = u_n \times q$ .

Mais, si cela semble difficile, on essaie alors de prouver la relation explicite  $u_n = u_0 \times q^n$ .

Quelle que soit la méthode, les relations doivent être vérifiées pour tout naturel n.

Il ne faut pas se contenter de faire quelques vérifications avec des valeurs de n particulières !

#### À retenir

Une augmentation régulière de a est associée à une suite arithmétique de raison a.

Une augmentation régulière de  $t\,\%$  est associée à une suite géométrique de raison  $1+t\,\%$  .

Une baisse régulière de  $t\,\%$  est associée à une suite géométrique de raison  $1-t\,\%$  .

## I Limites de référence

#### Limite infinie

La suite  $(u_n)$  a pour limite  $+\infty$  quand tous les termes  $u_n$  deviennent aussi grands que l'on veut pourvu que n soit suffisamment grand.

On note 
$$\lim_{n \to +\infty} u_n = +\infty$$
.

La suite  $(u_n)$  a pour limite  $-\infty$  quand tous les termes  $u_n$  deviennent aussi « négatifs » que l'on veut pourvu que n soit suffisamment grand.

On note 
$$\lim_{n \to +\infty} u_n = -\infty$$
.

## Limites de référence

$$\lim_{n \to +\infty} n = +\infty \quad \lim_{n \to +\infty} n^2 = +\infty \quad \lim_{n \to +\infty} n^3 = +\infty \quad \lim_{n \to +\infty} \sqrt{n} = +\infty$$

## Limite finie

La suite  $(u_n)$  a pour limite l quand tous les termes  $u_n$  deviennent aussi proches de l que l'on veut pourvu que n soit suffisamment grand.

On note 
$$\lim_{n \to +\infty} u_n = l$$
.

On dit que la suite **converge** vers l.

## **Propriétés**

La limite d'une suite est **unique**.

Si 
$$\lim_{n \to +\infty} u_n$$
 existe, alors on a :  $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1}$ 

#### Suite stationnaire

Soit l un nombre réel; si  $u_n = l$  à partir d'un certain rang, alors  $\lim_{n \to +\infty} u_n = l$ .

#### Limites de référence

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \quad \lim_{n \to +\infty} \frac{1}{n^2} = 0 \quad \lim_{n \to +\infty} \frac{1}{n^3} = 0 \quad \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

## Limite de $(q^n)$

Si 
$$q > 1$$
, alors  $\lim_{n \to +\infty} (q^n) = +\infty$ .

Si 
$$q = 1$$
, alors  $\lim_{n \to +\infty} (q^n) = 1$ .

Si 
$$-1 < q < 1$$
, alors  $\lim_{n \to +\infty} (q^n) = 0$ .

Si  $q \le -1$ , alors la suite  $(q^n)$  n'a pas de limite.

### **Définition**

La suite  $(u_n)$  diverge lorsqu'elle a une limite infinie ou lorsqu'elle n'a pas de limite.

## II Opérations et limites

## **Opérations**

La détermination de la limite d'une somme, d'un produit ou d'un quotient de 2 suites est intuitive, et vérifie les tableaux ci-dessous.

Si, dans un exercice, vous êtes confronté à une **forme indéterminée** (notée FI dans le tableau), alors vous serez guidés pour pouvoir déterminer la limite.

| $\lim_{n \to +\infty} u_n$         | 1    | 1         | 1         | +∞        | +∞        | $-\infty$ |
|------------------------------------|------|-----------|-----------|-----------|-----------|-----------|
| $\lim_{n \to +\infty} v_n$         | l'   | +∞        | $-\infty$ | $+\infty$ | $-\infty$ | $-\infty$ |
| $\lim_{n \to +\infty} (u_n + v_n)$ | l+l' | $+\infty$ | $-\infty$ | +∞        | FI        | $-\infty$ |

| $\lim_{n \to +\infty} u_n$       | 1   | l>0 | l>0       | l<0       | l<0       | +∞ | +∞        | $-\infty$ | 0                      |
|----------------------------------|-----|-----|-----------|-----------|-----------|----|-----------|-----------|------------------------|
| $\lim_{n \to +\infty} v_n$       | l'  | +∞  | $-\infty$ | +∞        | $-\infty$ | +∞ | $-\infty$ | $-\infty$ | $+\infty$ ou $-\infty$ |
| $\lim_{n \to +\infty} (u_n v_n)$ | 11' | +∞  | $-\infty$ | $-\infty$ | +∞        | +∞ | $-\infty$ | +∞        | FI                     |

| $\lim_{n \to +\infty} u_n$             | 1              | 1                      | $+\infty$ | +∞        | $-\infty$ | $-\infty$ | $+\infty$ ou $-\infty$ |
|----------------------------------------|----------------|------------------------|-----------|-----------|-----------|-----------|------------------------|
| $\lim_{n \to +\infty} v_n$             | $l' \neq 0$    | $+\infty$ ou $-\infty$ | l' > 0    | l' < 0    | l' > 0    | l' < 0    | $+\infty$ ou $-\infty$ |
| $\lim_{n \to +\infty} \frac{u_n}{v_n}$ | $\frac{l}{l'}$ | 0                      | $+\infty$ | $-\infty$ | $-\infty$ | $+\infty$ | FI                     |

| $\lim_{n \to +\infty} u_n$             | $l > 0$ ou $+\infty$    | $l < 0$ ou $-\infty$    | $l > 0$ ou $+\infty$    | $l < 0$ ou $-\infty$    | 0  |
|----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----|
| $\lim_{n \to +\infty} v_n$             | $0 \text{ et } v_n > 0$ | $0 \text{ et } v_n > 0$ | $0 \text{ et } v_n < 0$ | $0 \text{ et } v_n < 0$ | 0  |
| $\lim_{n \to +\infty} \frac{u_n}{v_n}$ | +∞                      | $-\infty$               | $-\infty$               | +∞                      | FI |

#### Astuce

Dans une expression, toute constante peut être considérée comme une suite stationnaire, dont la limite est elle-même.

#### Savoir faire

Être capable de déterminer une limite de suite géométrique, ou une limite de la somme des termes d'une suite géométrique de raison positive et strictement inférieure à 1.

#### Savoir faire

Être capable de conjecturer graphiquement une limite de suite définie par une relation de récurrence de type  $u_{n+1} = f(u_n)$  pour une fonction f « sympathique ».

## III Comparaisons et limites

## Théorème de comparaison

Si  $\lim_{n\to +\infty}u_n=+\infty$  et si, à partir d'un certain rang,  $v_n\geq u_n$ , alors  $\lim_{n\to +\infty}v_n=+\infty$ .

## Propriété

Si  $\lim_{n \to +\infty} u_n = l$  et si la suite  $(u_n)$  est croissante, alors, pour tout entier naturel  $n, u_n \le l$ .

## Théorème des gendarmes

Si  $\lim_{n \to +\infty} u_n = l$  et si  $\lim_{n \to +\infty} w_n = l$  et si, à partir d'un certain rang,  $u_n \le v_n \le w_n$ , alors  $\lim_{n \to +\infty} v_n = l$ .

## IV Suites arithmético-géométriques

#### **Définition**

Soit a et b sont deux réels fixés.

Une suite  $(u_n)$  est **arithmético-géométrique** de paramètres a et b si et seulement si elle satisfait à une relation de récurrence du type  $u_{n+1} = a \times u_n + b$ .

Si a = 1, alors une telle suite est arithmétique de raison b.

Si b = 0, alors une telle suite est géométrique de raison a.

## Propriété

La recherche d'une formule explicite pour une suite arithmético-géométrique  $(u_n)$  de paramètres a et b se fait en 3 étapes.

- On recherche le nombre l tel que l = al + b.
- On démontre que la suite  $(v_n)$  définie pour tout naturel n par l'égalité  $v_n = u_n l$  est géométrique de raison a.
- On détermine alors une formule explicite pour  $(v_n)$ , puis pour  $(u_n)$ .

#### Savoir faire

Être capable de déterminer une formule explicite pour une suite arithmético-géométrique.

## **Exercices corrigés**

### Exercice 1

Un exercice répétitif pour apprendre les opérations sur les limites de suites.

1. Soit  $(f_n)$  la suite définie par  $f_n = \frac{5}{n^2}$  pour tout naturel n.

Déterminer 
$$\lim_{n \to +\infty} f_n$$
.

- 2. Soit  $(u_n)$  la suite définie par  $u_n = -4n^2 \sqrt{n} + 11$  pour tout naturel n. Déterminer  $\lim_{n \to +\infty} u_n$ .
- 3. Soit  $(v_n)$  la suite définie par  $v_n = \frac{9 \frac{2}{n}}{\frac{1}{\sqrt{n}} 1}$  pour tout naturel n supérieur ou égal à 2.

Déterminer  $\lim_{n\to+\infty} v_n$ .

**4.** Soit  $(r_n)$  la suite définie par  $r_n = \frac{1-0.98^n}{1-n^2}$  pour tout naturel n supérieur ou égal à 2.

Déterminer  $\lim_{n \to +\infty} r_n$ .

5. Soit  $(w_n)$  la suite définie par  $w_n = -n^3 + 3n^2 - 2n$  pour tout naturel n. Vérifier que l'expression proposée conduit à une forme indéterminée si l'on cherche  $\lim_{n \to +\infty} w_n$ .

On constate alors que :  $w_n = n^3 \left(-1 + \frac{3}{n} - \frac{2}{n^2}\right)$ .

Déterminer alors  $\lim_{n \to +\infty} w_n$ .

**6.** Soit  $(t_n)$  la suite définie par  $t_n = \frac{n+9}{-n+7}$  pour tout naturel n supérieur ou égal à 8.

Vérifier que l'expression proposée conduit à une forme indéterminée si l'on cherche  $\lim_{n\to +\infty} t_n$ .

Vérifier alors que :  $t_n = \frac{1 + \frac{9}{n}}{-1 + \frac{7}{n}}$ .

Déterminer  $\lim_{n\to+\infty} t_n$ .

7. Soit  $(p_n)$  la suite définie par  $p_n = \frac{8n^2 + 1}{n+2}$  pour tout naturel n.

Vérifier que l'expression proposée conduit à une forme indéterminée si l'on cherche  $\lim_{n\to+\infty}t_n$ .

Vérifier alors que :  $p_n = n \frac{8 + \frac{1}{n^2}}{1 + \frac{2}{n}}$ .

Déterminer  $\lim_{n \to +\infty} p_n$ .

## Corrigé

1. On a :  $\lim_{n \to +\infty} 5 = 5$  et  $\lim_{n \to +\infty} n^2 = +\infty$ .

Donc:  $\lim_{n \to +\infty} f_n = 0$  (limite d'un quotient).

2. 
$$u_n = -4n^2 - \sqrt{n} + 11$$
.

On a: 
$$\lim_{n \to +\infty} -4 = -4$$
 et  $\lim_{n \to +\infty} n^2 = +\infty$ .

Or 
$$-4 < 0$$
. Donc  $\lim_{n \to +\infty} -4n^2 = -\infty$  (limite d'un produit).

Par ailleurs 
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$
. Donc  $\lim_{n \to +\infty} -\sqrt{n} = -\infty$ .

Enfin 
$$\lim_{n \to +\infty} 11 = 11$$
.

On obtient donc finalement  $\lim_{n \to +\infty} u_n = -\infty$  (limite d'une somme).

3. 
$$v_n = \frac{9 - \frac{2}{n}}{\frac{1}{\sqrt{n}} - 1}$$
.

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
. Or  $-\frac{2}{n} = (-2) \times \frac{1}{n}$ . Donc  $\lim_{n \to +\infty} -\frac{2}{n} = (-2) \times 0 = 0$ .

Par ailleurs 
$$\lim_{n \to +\infty} 9 = 9$$
.

Donc 
$$\lim_{n \to +\infty} 9 - \frac{2}{n} = 9 - 0 = 9$$
 (limite d'une somme).

De même, on a 
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} - 1 = 0 - 1 = -1$$
 (limite d'une somme).

On obtient donc finalement  $\lim_{n \to +\infty} v_n = \frac{9}{-1} = -9$  (limite d'un quotient).

4. 
$$r_n = \frac{1-0.98^n}{1-n^2}$$
.

$$-1 < 0.98 < 1$$
, donc  $\lim_{n \to +\infty} (0.98^n) = 0$ .

Donc 
$$\lim_{n \to +\infty} (1 - 0.98^n) = 1 - 0 = 1.$$

Par ailleurs, comme 
$$\lim_{n \to +\infty} n^2 = +\infty$$
, on a  $\lim_{n \to +\infty} -n^2 = -\infty$ .

Et par là: 
$$\lim_{n \to +\infty} 1 - n^2 = -\infty$$
 (limite d'une somme).

On obtient donc finalement  $\lim_{n \to +\infty} r_n = 0$  (limite d'un quotient).

5. 
$$w_n = -n^3 + 3n^2 - 2n$$

On obtient facilement  $\lim_{n\to+\infty} -n^3 = -\infty$  et  $\lim_{n\to+\infty} 3n^2 = +\infty$ , ce qui conduit à une forme indéterminée.

On factorise alors le terme « dominant » de la somme  $w_n$ .

$$w_n = n^3 \left( -1 + \frac{3}{n} - \frac{2}{n^2} \right).$$

Or 
$$\lim_{n \to +\infty} n^3 = +\infty$$
 et  $\lim_{n \to +\infty} -1 + \frac{3}{n} - \frac{2}{n^2} = -1 + 0 - 0 = -1$ .

On obtient donc finalement  $\lim_{n \to +\infty} w_n = -\infty$  (limite d'un produit).

**6.** 
$$t_n = \frac{n+9}{-n+7}$$
.

On obtient facilement  $\lim_{n\to+\infty} n+9=+\infty$  et  $\lim_{n\to+\infty} -n+7=-\infty$ , ce qui conduit à une forme indéterminée.

On factorise alors les termes « dominants » du quotient  $t_n$  et on simplifie.

$$t_n = \frac{n(1+\frac{9}{n})}{n(-1+\frac{7}{n})} = \frac{1+\frac{9}{n}}{-1+\frac{7}{n}}.$$

Or 
$$\lim_{n \to +\infty} 1 + \frac{9}{n} = 1 + 0 = 1$$
 et  $\lim_{n \to +\infty} -1 + \frac{7}{n} = -1 + 0 = -1$ .

Donc on obtient finalement  $\lim_{n \to +\infty} t_n = \frac{1}{-1} = -1$  (limite d'un produit).

7. 
$$p_n = \frac{8n^2 - n + 1}{n + 2}$$
.

On obtient facilement  $\lim_{n \to +\infty} 8n^2 + 1 = +\infty$  et  $\lim_{n \to +\infty} n + 2 = +\infty$ , ce qui conduit à une forme indéterminée.

On factorise alors les termes « dominants » du quotient  $p_n$  et on simplifie.

$$p_n = \frac{8n^2 + 1}{n + 2} = \frac{n^2 \left(8 + \frac{1}{n^2}\right)}{n\left(1 + \frac{2}{n}\right)} = n \frac{8 + \frac{1}{n^2}}{1 + \frac{2}{n}}.$$

Or 
$$\lim_{n \to +\infty} n = +\infty$$
 et  $\lim_{n \to +\infty} \frac{8 + \frac{1}{n^2}}{1 + \frac{2}{n}} = \frac{8 + 0}{1 + 0} = 8$ .

Donc finalement  $\lim_{n \to +\infty} p_n = +\infty$  (limite d'un produit).

## Exercice 2

Un exercice utilisant les théorèmes de comparaison.

1. Soit  $(u_n)$  la suite définie par  $u_n = n^3 + \sqrt{n^2 - n + 3} + 11$  pour tout naturel n.

On sait que, pour tout naturel n,  $\sqrt{n^2 - n + 3} \ge 0$ .

Déterminer  $\lim_{n\to+\infty} u_n$  par **comparaison**.

2. Soit  $(w_n)$  la suite définie par  $w_n = \frac{(-1)^n}{n}$  pour tout naturel n non nul.

Déterminer  $\lim_{n \to +\infty} w_n$  en utilisant le **théorème des gendarmes**.

3. Montrer que, pour tout naturel  $n, n^2 - n + 8 > 0$ .

Soit  $(v_n)$  la suite définie par  $v_n = \frac{2n^2 + \cos n}{n^2 - n + 8}$  pour tout naturel n.

On sait que, pour tout naturel  $n, -1 \le \cos n \le 1$ .

Déterminer  $\lim_{n \to +\infty} v_n$  en utilisant le **théorème des gendarmes**.