

Chapitre 1

Suites numériques

Suites arithmétiques - Suites géométriques

1.1.1 Point de cours

Définition : une suite (u_n) est **arithmétique** s'il existe un nombre réel r tel que, pour tout entier naturel n, $u_{n+1} = u_n + r$. Le réel r est appelé **raison de la suite** (u_n) .

Forme explicite: si la suite (u_n) est arithmétique de raison r et de premier terme u_0 , alors pour tout entier naturel n, $u_n = u_0 + nr$.

Plus généralement, pour tous entiers naturels n et p, $u_n = u_p + (n-p)r$.

Somme des
$$n$$
 premiers termes d'une suite arithmétique :
$$S = u_0 + u_1 + \dots + u_n = \frac{(n+1)(u_0 + u_n)}{2}.$$
 Plus généralement : $S = \frac{\text{nombre de termes} \times (\text{premier terme} + \text{dernier terme})}{2}.$

Définition : une suite (u_n) est géométrique s'il existe un nombre réel q non nul tel que, pour tout entier naturel n, $u_{n+1} = qu_n$.

Le réel q est appelé **raison de la suite** (u_n) .

Forme explicite : si la suite (u_n) est **géométrique** de raison q et de premier terme u_0 , alors pour tout entier naturel n, $u_n = u_0 q^n$.

Plus généralement, pour tous entiers naturels n et p, $u_n = u_p q^{n-p}$.

Somme des n premiers termes d'une suite géométrique :

• si
$$q = 1$$
, alors $S = u_0 + u_1 + \dots + u_n = (n+1)u_0$
• si $q \ne 1$, alors $S = u_0 + u_1 + \dots + u_n = u_0 \frac{1 - q^{n+1}}{1 - q}$.

1.1.2 Exercices d'application de cours

EXERCICE 1 10 minutes

Les suites u_n sont-elles arithmétiques? Si oui, donner la raison.

1.
$$u_n = 2n + 3$$
.

3.
$$u_{n+1} = u_n - 2$$
.

5.
$$u_n = \sqrt{2017} - 2016n$$
.

2.
$$u_n = \frac{n+1}{n}$$
.

4.
$$u_n = n^2 + n + 3$$
.

6.
$$u_n = u_{n-1} + n - 1$$
.

EXERCICE 2 5 minutes

Déterminer le premier terme u_0 et la raison des suites arithmétiques suivantes :

1.
$$u_{10} = 6$$
 et $u_{28} = 1, 5$.

2.
$$u_9 = 19$$
 et $u_{18} = 2017$.

EXERCICE 3 5 minutes

Exprimer u_n en fonction de n sachant que la suite (u_n) est arithmétique de raison r:

1.
$$u_0 = 3$$
 et $r = 2$.

3.
$$u_1 = 0$$
 et $r = \sqrt{2}$.

2.
$$u_0 = 0$$
 et $r = 1$.

4.
$$u_2 = 5$$
 et $r = -3$.

EXERCICE 4 5 minutes

Démontrer que $\forall n \in \mathbb{N}, 1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

EXERCICE 5 5 minutes

Calculer la somme des cent premiers termes de la suite arithmétique (u_n) de premier terme $u_0 = 3$ et de raison r = 5.

EXERCICE 6 10 minutes

Le 1^{er} septembre 2022, Tom décide de mettre de l'argent de côté pour ses vacances d'été. Il dépose 500 € le 1^{er} septembre, puis 30 € de moins par rapport au mois précédent chaque 1^{er} du mois.

Soit t_n la somme mise de côté le n-ième mois. On pose $t_0 = 500$.

- **1.** Exprimer t_{n+1} en fonction de t_n . En déduire la nature de la suite (t_n) .
- **2.** En déduire t_n en fonction de n.
- **3.** Soit S_n la somme totale mise de côté par Tom depuis le 1^{er} septembre. Exprimer S_n en fonction de n.
- 4. De combien disposera Tom le 14 juillet 2023.

EXERCICE 7 10 minutes

Les suites u_n sont-elles géométriques? Si oui, donner la raison.

1.
$$u_n = -7^{n+2}$$
.

3.
$$u_{n+1} = \sqrt{2}u_n$$
.

5.
$$u_n = 2016^n$$

2.
$$u_n = \frac{n+1}{n}$$
.

3.
$$u_{n+1} = \sqrt{2}u_n$$
. **5.** $u_n = 2016^n$. **4.** $u_n = n^2 + n + 3$. **6.** $u_n = 2u_{n-1} + 2$.

6.
$$u_n = 2u_{n-1} + 2u_{n-1}$$

EXERCICE 8 5 minutes

Déterminer le premier terme u_0 et la raison (q > 0) des suites géométriques suivantes :

1.
$$u_{10} = 6$$
 et $u_{12} = 1, 5$.

2.
$$u_9 = 81$$
 et $u_{13} = 729$.

9

EXERCICE 9 5 minutes Exprimer u_n en fonction de n sachant que la suite (u_n) est géométrique de raison q.

1.
$$u_0 = 3$$
 et $q = 2$.

3.
$$u_1 = 1$$
 et $q = \sqrt{2}$

2.
$$u_2 = 5$$
 et $q = -3$.

3.
$$u_1 = 1$$
 et $q = \sqrt{2}$.
4. $u_0 = 3$ et $q = \frac{1}{3}$.

EXERCICE 10 10 minutes

Déterminer les progressions géométriques de sept termes (réels) telles que la somme des trois premiers termes est égale à 2 et la somme des trois derniers termes est égale à 1250.

EXERCICE 11 5 minutes

Démontrer que
$$\forall n \in \mathbb{N}$$
 et $q \neq 1$, $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$.

EXERCICE 12 5 minutes

Calculer la somme des cent premiers termes d'une suite géométrique de premier terme $u_0 = 2$ et de raison $q = \frac{1}{2}$.

EXERCICE 13 10 minutes

Le jeudi 8 septembre 2022, Matt promet à Tom de lui donner tous les jeudis du chocolat pour son aide précieuse en mathématiques. Le 8 septembre, il lui offre un carré et dit qu'il doublera la quantité toutes les semaines.

Soit c_n le nombre de carrés reçus par Tom la n-ième semaine. On pose $c_1 = 1$.

- **1.** Exprimer c_{n+1} en fonction de c_n . En déduire la nature de la suite (c_n) .
- **2.** En déduire c_n en fonction de n.
- 3. Soit S_n le nombre total de carrés de chocolat reçus par Tom depuis le 8 septembre. Exprimer S_n en fonction de n.
- 4. Combien de tablettes de chocolat, au total, Matt aura-t-il donné à Tom le 29 décembre 2022 s'il respecte sa promesse? (Les tablettes de chocolat de Matt ont 24 carrés).

EXERCICE 14 10 minutes

Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 , $S_n = u_0 + u_1 + \cdots + u_n$.

- **1.** Démontrer que $S_n = (n+1)u_0 + r \frac{n(n+1)}{2}$.
- **2.** En déduire que $S_n = (n+1)\frac{u_0 + u_n}{2}$.

EXERCICE 15 10 minutes

Soit (u_n) la suite définie par $u_0 = 200$ et $u_{n+1} = 0.8u_n + 3$.

- **1.** Calculer u_1 et u_2 .
- **2.** Vérifier que la suite (u_n) n'est ni arithmétique, ni géométrique.
- **3.** Soit (v_n) la suite définie par $v_n = u_n 15$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique dont on donnera la raison et le premier terme.

- **b.** En déduire v_n en fonction de n.
- **c.** Exprimer u_n en fonction de n.

EXERCICE 16 10 minutes

Soit (u_n) la suite définie par $u_1 = 0$ et $u_{n+1} = 2u_n - 7$.

- 1. Calculer u_2 et u_3 .
- **2.** Vérifier que la suite (u_n) n'est ni arithmétique, ni géométrique.
- **3.** Soit (v_n) la suite définie par $v_n = u_n 7$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique dont on donnera la raison et le premier terme.
 - **b.** En déduire v_n en fonction de n.
 - **c.** Exprimer u_n en fonction de n.

EXERCICE 17 10 minutes

Soit (u_n) la suite définie par $u_0 = 2$ et $u_{n+1} = 0,9u_n + 3$

- **1.** Calculer u_1 et u_2 .
- **2.** Vérifier que la suite (u_n) n'est ni arithmétique, ni géométrique.
- **3.** Soit (v_n) la suite définie par $v_n = u_n + a$.
 - **a.** Déterminer la valeur de a pour que la suite (v_n) soit une suite géométrique dont on donnera la raison et le premier terme.
 - **b.** En déduire v_n en fonction de n.
 - **c.** Exprimer u_n en fonction de n.

EXERCICE 18 10 minutes

On considère la progression géométrique 1, 3, 9, 27, 81.

- **1.** Quelle est la valeur du terme de rang *n*?
- **2.** Montrer que les différences entre deux termes successifs forment une progression géométrique.
- 3. Cette propriété peut-elle être généralisée?

EXERCICE 19 10 minutes

Math s'entraîne 10 minutes à la première séance puis augmente la durée de 10% à chaque séance. Soit u_n la durée d'entraînement de la $n^{\text{ème}}$ séance.

- **1.** Déterminer u_n en fonction de n.
- **2.** Sachant que son objectif est de courir 2 heures 30, à quelle séance, Maths atteindra-t-il son objectif?
- 3. Quel sera alors le temps total d'entraînement de Math pour atteindre son objectif?

11

1.1.3 Exercices d'approfondissement

EXERCICE 20 10 minutes

Soit (u_n) et (v_n) les suites définies, pour tout $n \in \mathbb{N}$ par :

$$u_0 = 1$$
, $u_1 = 3$ et $u_{n+2} = 2u_{n+1} - u_n$, $v_n = u_{n+1} - u_n$.

- 1. Démontrer que la suite (v_n) est stationnaire.
- 2. En déduire que la suite (u_n) est arithmétique et préciser sa raison et son premier terme.
- **3.** Exprimer u_n en fonction de n.
- **4.** Calculer la somme $S_n = u_0 + u_2 + \cdots + u_n$.

EXERCICE 21 15 minutes

Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 2$ et $u_{n+2} = 6u_{n+1} - 5u_n$ où a et b sont deux réels $(b \neq 0)$.

- 1. Calculer u_2 , u_3 et u_4 .
- **2.** Résoudre l'équation $x^2 = 6x 5$.
- **3.** Déterminer deux réels A et B tels que $u_n = A \times 5^n + B$.
- **4.** En déduire u_{10} .

EXERCICE 22 10 minutes

On considère la suite (u_n) définie par : $u_0 = 1$ et, $\forall n \in \mathbb{N}$ $u_{n+1} = \frac{1}{2}u_n + 4$.

On pose, pour tout nombre entier naturel n, $v_n = u_n - 6$.

- 1. Pour tout nombre entier naturel n, calculer v_{n+1} en fonction de v_n . Quelle est la nature de la suite (v_n) ?
- **2.** Démontrer que pour tout nombre entier naturel $n, u_n = -5\left(\frac{1}{3}\right)^n + 6$.
- **3.** Etudier la convergence de la suite (u_n) .

EXERCICE 23 15 minutes

Une suite (u_n) est définie par son premier terme u_1 et la relation de récurrence $u_{n+1} = \frac{u_n + 6}{u_n + 2}$.

- 1. Montrer qu'il existe deux valeurs a et b de u_1 (a < b) pour lesquelles la suite est constante.
- **2.** Montrer que si $u_1 \neq a$ et $u_1 \neq b$, il en est de même de u_n . Dans ces conditions, calculer $\frac{u_{n+1} a}{u_{n+1} b}$ en fonction de $\frac{u_n a}{u_n b}$.
- **3.** En déduire que la suite (v_n) définie par $v_n = \frac{u_n a}{u_n b}$ est géométrique.
- **4.** Exprimer v_n puis u_n en fonction de n.

EXERCICE 24 20 minutes

Alice débute au jeu de fléchettes. Elle effectue des lancers successifs d'une fléchette. Lorsqu'elle atteint la cible à un lancer, la probabilité qu'elle atteigne la cible au lancer suivant est égale à $\frac{1}{3}$. Lorsqu'elle a manqué la cible à un lancer, la probabilité qu'elle manque la cible au lancer suivant est égale à $\frac{4}{5}$. On suppose qu'au premier lancer elle a autant de chances d'atteindre la cible que de la manquer.

Pour tout entier naturel n strictement positif, on considère les évènements suivants :

 A_n : «Alice atteint la cible au n^e coup »,

 B_n : « Alice rate la cible au n^e coup ».

On pose $p_n = P(A_n)$.

Pour les questions 1. et 2. on pourra éventuellement utiliser un arbre pondéré.

- 1. Déterminer p_1 et montrer que $p_2 = \frac{4}{15}$.
- **2.** Montrer que, pour tout entier naturel $n \ge 2$, $p_n = \frac{2}{15}p_{n-1} + \frac{1}{5}$.
- **3.** Pour $n \ge 1$ on pose $u_n = p_n \frac{3}{13}$. Montrer que la suite (u_n) est une suite géométrique, dont on précisera le premier terme u_1 et la raison q.
- **4.** Ecrire u_n puis p_n en fonction de n.
- **5.** Déterminer $\lim_{n\to+\infty} p_n$, interpréter ce résultat.

EXERCICE 25 10 minutes

On considère la suite (w_n) dont les termes vérifient, $\forall n \in \mathbb{N}^* : nw_n = (n+1)w_{n-1} + 1$ et $w_0 = 1$. Le tableau suivant donne les dix premiers termes de cette suite.

w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
1	3	5	7	9	11	13	15	17	19

- 1. Détailler le calcul permettant d'obtenir w_{10} .
- **2.** Donner la nature de la suite (w_n) . Calculer w_{2009} .

EXERCICE 26 10 minutes

Soit (u_n) la suite définie pour tout $n \ge 2$ par la relation (E): $u_n = 5u_{n-1} - 6u_{n-2}$.

- 1. On donne la suite géométrique $u_n = r^n$. Montrer qu'il existe deux valeurs de r telles que la suite vérifie la relation (E).
 - On notera ces deux suites (a_n) et (b_n) .
- **2.** Montrer qu'il existe deux réels α et β tels que $u_0 = \alpha a_0 + \beta b_0$ et $u_1 = \alpha a_1 + \beta b_1$.
- **3.** Montrer que $\forall n \in \mathbb{N}$, $u_n = \alpha a_n + \beta b_n$.

EXERCICE 27 10 minutes

Après ses trois entretiens d'embauche, Bob a reçu trois propositions, pour une embauche le 1^{er} juillet 2017 :

- L'entreprise A lui propose un salaire mensuel de 1 300 € et une augmentation de 100 € chaque 1^{er} juillet.
- L'entreprise B lui propose un salaire mensuel de 1 400 \in et une augmentation de 5% chaque 1^{er} juillet.

- L'entreprise C lui propose un salaire mensuel de $1\,500 \in$ et une augmentation de 2% plus $30 \in$ chaque 1^{er} juillet.
- 1. On désigne par a_0 le salaire de départ de Bob s'il choisit l'entreprise A.
 - **a.** Déterminer a_0 et a_1 .
 - **b.** Exprimer a_{n+1} en fonction de a_n et en déduire la nature de la suite (a_n) .
 - **c.** En déduire une expression de a_n en fonction de a_0 et de n.
 - **d.** Soit (A_n) la suite représentant la somme de tous les salaires que Bob aura perçu du 1^{er} juillet 2017 au 31 juin de l'année 2017 + n, s'il choisit l'entreprise A. Montrer que $A_n = 600(n+1)(n+26)$
- **2.** On désigne par b_0 le salaire de départ de Bob s'il choisit l'entreprise B.
 - **a.** Déterminer b_0 et b_1 .
 - **b.** Exprimer b_{n+1} en fonction de b_n et en déduire la nature de la suite (b_n) .
 - **c.** En déduire une expression de b_n en fonction de b_0 et de n.
 - **d.** Soit (B_n) la suite représentant la somme de tous les salaires que Bob aura perçu du 1^{er} juillet 2017 au 31 juin de l'année 2017 + n, s'il choisit l'entreprise B. Montrer que $B_n = 336\,000\,(1,05^{n+1}-1)$.
- **3.** On désigne par c_0 le salaire de départ de Bob s'il choisit l'entreprise C.
 - **a.** Déterminer c_0 et c_1 .
 - **b.** Exprimer c_{n+1} en fonction de c_n et en déduire la nature de la suite (c_n) .
 - **c.** Soit (u_n) la suite définie par $u_n = c_n + \alpha$. Déterminer la valeur de α pour que la suite (u_n) soit géométrique de raison 1,02.
 - **d.** En déduire une expression de u_n puis de c_n en fonction de n.
 - **e.** Soit (C_n) la suite représentant la somme de tous les salaires que Bob aura perçu du 1^{er} juillet 2017 au 31 juin de l'année 2017 + n, s'il choisit l'entreprise C. Montrer que $C_n = 1\,800\,000\,(1,02^{n+1}-1)-18\,000\,(n+1)$.
- **4.** En utilisant le tableur de la calculatrice et en se limitant aux 15 prochaines années, aider Bob à choisir son entreprise en fonction du nombre d'années qu'il pense rester dans l'entreprise.

EXERCICE 28 15 minutes

- **1.** Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \frac{3}{2}u_{n+1} \frac{1}{2}u_n$.
 - **a.** Calculer u_2 , u_3 et u_4 .
 - **b.** Montrer que, pour tout nombre entier naturel n, $u_{n+1} = \frac{1}{2}u_n + 3$.
 - **c.** Dans un repère orthonormé tracer les droites d'équations y = x et $y = \frac{1}{2}x + 3$. Placer u_0 , en utilisant ces deux droites, placer u_1 , u_2 et u_3 sur l'axe des abscisses. Que peut-on conjecturer sur les variations et la convergence de cette suite?
- **2.** Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = u_n 6$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique dont on précisera le premier terme et la raison.

- 14
 - **b.** Exprimer v_n puis u_n en fonction de n.
 - **c.** En déduire que la suite (u_n) est convergente et déterminer sa limite.

EXERCICE 29 10 minutes

Soit (u_n) la suite définie par $u_0 = 5$ et $\forall n \in \mathbb{N}$, par $u_{n+1} = \frac{4u_n - 1}{u_n + 2}$.

On admet que $u_{n+1} - 1 = \frac{3(u_n - 1)}{u_n + 2}$.

Pour tout entier naturel n, on pose $v_n = \frac{1}{u_n - 1}$.

- 1. Démontrer que la suite (v_n) est une suite arithmétique de raison $\frac{1}{3}$.
- **2.** Pour tout entier naturel n, exprimer v_n puis u_n en fonction de n.
- **3.** En déduire la limite de la suite (u_n) .

EXERCICE 30 10 minutes

La suite (u_n) est définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + n - 1$. On définit la suite (v_n) par $v_n = 4u_n - 8n + 24$.

- 1. Démontrer que (v_n) est une suite géométrique décroissante dont on donnera la raison et le premier terme.
- **2.** Démontrer que $\forall n \in \mathbb{N}, \ u_n = 7\left(\frac{1}{2}\right)^n + 2n 6.$
- **3.** Vérifier que $\forall n \in \mathbb{N}$, $u_n = x_n + y_n$ où (x_n) est une suite géométrique et (y_n) une suite arithmétique dont on précisera pour chacune le premier terme et la raison.
- **4.** En déduire l'expression de $S_n = \sum_{k=0}^n u_k$ en fonction de n.

EXERCICE 31 15 minutes

Un site internet propose un jeu en ligne :

- si l'internaute gagne une partie, la probabilité qu'il gagne la partie suivante est égale à $\frac{2}{5}$;
- si l'internaute perd une partie, la probabilité qu'il perde la partie suivante est égale à $\frac{4}{5}$.

Pour tout entier naturel non nul n, on désigne par G_n l'évènement «l'internaute gagne la n-ième partie » et on note p_n la probabilité de l'évènement G_n .

L'internaute gagne toujours la première partie et donc $p_1 = 1$.

1. Compléter l'arbre pondéré suivant :