1re/Tle

Des Maths au Grand Oral

$$e^{-\frac{1}{3}}y = \int 2e^{\frac{1}{3}}\sin(3t)dt + c$$
 $e^{\frac{1}{2}}y = -\frac{24}{37}\cos(3t) - \frac{4}{37}\sin(3t) + ce^{\frac{1}{3}}$
 $Y(t) = \frac{24}{37}e^{\frac{1}{3}} - \frac{4}{37}\sin(3t)$

ellipses

Yves Coudert

Guillaume Ferré

Sommaire

Index thématique	11
Introduction	
 Comment utiliser ce livre? Le cadre de l'épreuve Quelques conseils pour réussir l'épreuve du Grand Oral 	15 15 17
Partie 1 Analyse	
Chapitre 1 Second degré	25
Problème 1.1 En quoi le nombre d'or est-il un joyau des mathématiques ? ★★	25
Problème 1.2 Peut-on modéliser la trajectoire d'une balle de tennis ? ★	30
Problème 1.3 Comment déterminer le point de croisement de deux véhicules ayant des mouvements rectilignes uniformément variés ? ★★	32
Problème 1.4 Comment modéliser et optimiser le bénéfice d'une entreprise à l'aide d'une fonction polynôme du second degré ? ★★	35
Chapitre 2 Suites numériques - Généralités	39
Problème 2.1 Comment obtenir une approximation de √2 par la méthode de Héron d'Alexandrie? ★★★	39
Problème 2.2 Comment modéliser l'évolution de bactéries dans des gouttes d'eau ? ★★	43
Problème 2.3	
La suite de Fibonacci est-elle une clé de lecture de l'univers ? ★★	46
Problème 2.4 En quoi le test de Lucas-Lehmer est-il pertinent pour trouver des nombres premiers ? ★★	50

Chapitre 6 Convexité	103
Problème 6.1	
Dans quelle mesure la modélisation mathématique	
peut-elle intervenir dans l'architecture ? ★★★	103
Problème 6.2	
Comment utiliser la convexité d'une fonction pour étudier	
le coût de production d'un produit ? ★★	107
Problème 6.3	
Comment comparer la répartition des revenus dans deux pays	
à l'aide des courbes de Lorenz ? ★★	111
Problème 6.4	
Peut-on mesurer la satisfaction d'un salarié ? ★★	117
Chapitre 7 Fonctions exponentielle et logarithme népérien	121
Problème 7.1	
Comment modéliser le refroidissement d'un corps à l'aide	
de la fonction exponentielle ? ★★	121
Problème 7.2	
Dans quelle mesure les fonctions exponentielle et logarithme népérien	
interviennent-elles en pharmacocinétique ? ★★	124
Problème 7.3	
Comment résoudre des équations dans № à l'aide de la fonction	
logarithme népérien ? ★★★	127
Chapitre 8 Fonctions trigonométriques	133
Problème 8.1	
Peut-on modéliser les phénomènes de marées à l'aide des fonctions	
trigonométriques ? ★ ★	133
Problème 8.2	
Comment construire, à l'aide d'une fonction trigonométrique, une fonction	
non continue et vérifiant la propriété des valeurs intermédiaires ? ★★★	137
Chapitre 9 Équations différentielles	141
Problème 9.1	
Comment utiliser les équations différentielles afin de modéliser	
l'évolution du taux d'alcoolémie dans le sang ? ★★	141
Problème 9.2	
Comment les équations différentielles permettent-elles	
d'étudier certaines réactions chimiques ? ★	144

Problème 9.3	
Peut-on modéliser la propagation d'une rumeur	
à l'aide d'une équation différentielle ? ★★★	146
Chapitre 10 Intégration et applications	151
Problème 10.1	
Comment approcher la valeur d'une intégrale à l'aide de la méthode des rectangles ? ★★★	151
Problème 10.2	
Comment calculer le volume d'un solide à l'aide d'une intégrale ? ★★	155
Problème 10.3 Comment l'intégration d'une fonction peut-elle intervenir dans l'étude d'une suite ? ★★	158
Partie 2 Algèbre et géométrie	
Chapitre 11 Combinatoire et dénombrement	163
Problème 11.1 Comment crypter un message en utilisant la méthode des grilles de Fleissner ? ★★★	163
Problème 11.2	
Peut-on gagner aux jeux de hasard grâce au dénombrement ? ★	169
Problème 11.3	
En quoi la machine Enigma a-t-elle joué un rôle décisif lors du conflit 39-45 ? ★★	17′
Chapitre 12 Calcul vectoriel	175
Problème 12.1	
Comment étudier des propriétés d'un solide de l'espace ? ★	175
Problème 12.2	
Comment utiliser les courbes de Bézier pour réaliser une courbe de lissage passant par des points donnés ? ★★★	177
Problème 12.3	
Peut-on voir un centre de gravité comme un isobarycentre ? ★★	181
Chapitre 13 Produit scalaire	185
Problème 13.1	
Comment utiliser le produit scalaire pour résoudre	
un problème de mécanique?★	185

Problème 13.2	
Comment utiliser le produit scalaire pour calculer des aires	
et des volumes ? **	187
Problème 13.3	
Comment utiliser le produit scalaire pour étudier	
des lignes de niveau?★★★	191
Chapitre 14 Équations cartésiennes et représentations	
paramétriques	195
Problème 14.1	
Comment modéliser un problème à l'aide d'équations cartésiennes	
et de représentations paramétriques ? ★★	195
Problème 14.2	
Comment étudier l'intersection de trois plans dans l'espace ? ★★	199
Problème 14.3	
Comment utiliser des représentations paramétriques de droites afin d'étudier les trajectoires de deux drones ? ★★	201
ann a ctudier tes trajectories de deux drones : A A	201
Partie 3 Probabilités	
Chapitre 15 Probabilités conditionnelles et indépendance	207
Problème 15.1	
Comment modéliser, à l'aide de probabilités,	
l'équation d'Hardy-Weinberg en génétique? ★★★	207
Problème 15.2	
Quelle est la probabilité qu'un élève ayant répondu correctement à une question connaisse vraiment la bonne réponse ? ★★	211
Problème 15.3	211
Comment mesurer la fiabilité d'un test de dépistage ? ★	213
	2.0
Problème 15.4	
Problème 15.4	
Problème 15.4 Peut-on savoir si un dé est truqué ou non ? ★ ★ ★	214
Problème 15.4 Peut-on savoir si un dé est truqué ou non ? ★★★	214
Problème 15.4 Peut-on savoir si un dé est truqué ou non ? * * * Chapitre 16 Variables aléatoires Problème 16.1	214
Problème 15.4 Peut-on savoir si un dé est truqué ou non ? * * * Chapitre 16 Variables aléatoires Problème 16.1 Comment modéliser les gains d'un jeu à l'aide d'une variable aléatoire ? * * Problème 16.2	214
Problème 15.4 Peut-on savoir si un dé est truqué ou non ? * * * Chapitre 16 Variables aléatoires Problème 16.1 Comment modéliser les gains d'un jeu à l'aide d'une variable aléatoire ? * *	214

Problème 16.3	
Comment des variables aléatoires permettent-elles de modéliser des jeux	
à base de changements d'états ? ★★★	223
Chapitre 17 Loi binomiale	227
Problème 17.1	
Peut-on perdre moins d'argent dans une fête foraine grâce	
à la loi binomiale?★	227
Problème 17.2	
Comment utiliser la loi binomiale pour réussir un concours ? ★	229
Problème 17.3	
Comment s'évader de prison à l'aide de la loi binomiale ? ★★	231
Chapitre 18 Inégalités de concentration	
et loi des grands nombres	235
Problème 18.1	
Comment utiliser une inégalité de concentration pour étudier l'origine	
d'une production d'œufs à partir d'un échantillon ? ★	235
Problème 18.2	
Comment utiliser une inégalité de concentration pour estimer	
une proportion inconnue à partir d'un échantillon ? ★★	238